我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
当前回答
用c#的另一个解决方案:
static List<List<T>> GetCombinations<T>(List<T> originalItems, int combinationLength)
{
if (combinationLength < 1)
{
return null;
}
return CreateCombinations<T>(new List<T>(), 0, combinationLength, originalItems);
}
static List<List<T>> CreateCombinations<T>(List<T> initialCombination, int startIndex, int length, List<T> originalItems)
{
List<List<T>> combinations = new List<List<T>>();
for (int i = startIndex; i < originalItems.Count - length + 1; i++)
{
List<T> newCombination = new List<T>(initialCombination);
newCombination.Add(originalItems[i]);
if (length > 1)
{
List<List<T>> newCombinations = CreateCombinations(newCombination, i + 1, length - 1, originalItems);
combinations.AddRange(newCombinations);
}
else
{
combinations.Add(newCombination);
}
}
return combinations;
}
用法示例:
List<char> initialArray = new List<char>() { 'a','b','c','d'};
int combinationLength = 3;
List<List<char>> combinations = GetCombinations(initialArray, combinationLength);
其他回答
下面是一个coffeescript实现
combinations: (list, n) ->
permuations = Math.pow(2, list.length) - 1
out = []
combinations = []
while permuations
out = []
for i in [0..list.length]
y = ( 1 << i )
if( y & permuations and (y isnt permuations))
out.push(list[i])
if out.length <= n and out.length > 0
combinations.push(out)
permuations--
return combinations
像Andrea Ambu一样用Python写的,但不是硬编码来选择三个。
def combinations(list, k):
"""Choose combinations of list, choosing k elements(no repeats)"""
if len(list) < k:
return []
else:
seq = [i for i in range(k)]
while seq:
print [list[index] for index in seq]
seq = get_next_combination(len(list), k, seq)
def get_next_combination(num_elements, k, seq):
index_to_move = find_index_to_move(num_elements, seq)
if index_to_move == None:
return None
else:
seq[index_to_move] += 1
#for every element past this sequence, move it down
for i, elem in enumerate(seq[(index_to_move+1):]):
seq[i + 1 + index_to_move] = seq[index_to_move] + i + 1
return seq
def find_index_to_move(num_elements, seq):
"""Tells which index should be moved"""
for rev_index, elem in enumerate(reversed(seq)):
if elem < (num_elements - rev_index - 1):
return len(seq) - rev_index - 1
return None
这是我用c++写的命题
我尽可能少地限制迭代器类型,所以这个解决方案假设只有前向迭代器,它可以是const_iterator。这应该适用于任何标准容器。在参数没有意义的情况下,它抛出std:: invalid_argument
#include <vector>
#include <stdexcept>
template <typename Fci> // Fci - forward const iterator
std::vector<std::vector<Fci> >
enumerate_combinations(Fci begin, Fci end, unsigned int combination_size)
{
if(begin == end && combination_size > 0u)
throw std::invalid_argument("empty set and positive combination size!");
std::vector<std::vector<Fci> > result; // empty set of combinations
if(combination_size == 0u) return result; // there is exactly one combination of
// size 0 - emty set
std::vector<Fci> current_combination;
current_combination.reserve(combination_size + 1u); // I reserve one aditional slot
// in my vector to store
// the end sentinel there.
// The code is cleaner thanks to that
for(unsigned int i = 0u; i < combination_size && begin != end; ++i, ++begin)
{
current_combination.push_back(begin); // Construction of the first combination
}
// Since I assume the itarators support only incrementing, I have to iterate over
// the set to get its size, which is expensive. Here I had to itrate anyway to
// produce the first cobination, so I use the loop to also check the size.
if(current_combination.size() < combination_size)
throw std::invalid_argument("combination size > set size!");
result.push_back(current_combination); // Store the first combination in the results set
current_combination.push_back(end); // Here I add mentioned earlier sentinel to
// simplyfy rest of the code. If I did it
// earlier, previous statement would get ugly.
while(true)
{
unsigned int i = combination_size;
Fci tmp; // Thanks to the sentinel I can find first
do // iterator to change, simply by scaning
{ // from right to left and looking for the
tmp = current_combination[--i]; // first "bubble". The fact, that it's
++tmp; // a forward iterator makes it ugly but I
} // can't help it.
while(i > 0u && tmp == current_combination[i + 1u]);
// Here is probably my most obfuscated expression.
// Loop above looks for a "bubble". If there is no "bubble", that means, that
// current_combination is the last combination, Expression in the if statement
// below evaluates to true and the function exits returning result.
// If the "bubble" is found however, the ststement below has a sideeffect of
// incrementing the first iterator to the left of the "bubble".
if(++current_combination[i] == current_combination[i + 1u])
return result;
// Rest of the code sets posiotons of the rest of the iterstors
// (if there are any), that are to the right of the incremented one,
// to form next combination
while(++i < combination_size)
{
current_combination[i] = current_combination[i - 1u];
++current_combination[i];
}
// Below is the ugly side of using the sentinel. Well it had to haave some
// disadvantage. Try without it.
result.push_back(std::vector<Fci>(current_combination.begin(),
current_combination.end() - 1));
}
}
我们可以用比特的概念来做这个。假设我们有一个字符串“abc”,我们想要所有长度为2的元素的组合(即“ab”,“ac”,“bc”)。
我们可以在1到2^n(排他性)的数字中找到集合位。这里是1到7,只要我们设置了bits = 2,我们就可以从string中输出相应的值。
例如:
1 - 001 二零零一 3011 ->印刷ab (str[0], str[1]) 四到一百。 5 - 101 ->打印ac (str[0], str[2]) 6 - 110 ->印刷ab (str[1], str[2]) 7 - 111。
代码示例:
public class StringCombinationK {
static void combk(String s , int k){
int n = s.length();
int num = 1<<n;
int j=0;
int count=0;
for(int i=0;i<num;i++){
if (countSet(i)==k){
setBits(i,j,s);
count++;
System.out.println();
}
}
System.out.println(count);
}
static void setBits(int i,int j,String s){ // print the corresponding string value,j represent the index of set bit
if(i==0){
return;
}
if(i%2==1){
System.out.print(s.charAt(j));
}
setBits(i/2,j+1,s);
}
static int countSet(int i){ //count number of set bits
if( i==0){
return 0;
}
return (i%2==0? 0:1) + countSet(i/2);
}
public static void main(String[] arhs){
String s = "abcdefgh";
int k=3;
combk(s,k);
}
}
简短快速的c#实现
public static IEnumerable<IEnumerable<T>> Combinations<T>(IEnumerable<T> elements, int k)
{
return Combinations(elements.Count(), k).Select(p => p.Select(q => elements.ElementAt(q)));
}
public static List<int[]> Combinations(int setLenght, int subSetLenght) //5, 3
{
var result = new List<int[]>();
var lastIndex = subSetLenght - 1;
var dif = setLenght - subSetLenght;
var prevSubSet = new int[subSetLenght];
var lastSubSet = new int[subSetLenght];
for (int i = 0; i < subSetLenght; i++)
{
prevSubSet[i] = i;
lastSubSet[i] = i + dif;
}
while(true)
{
//add subSet ad result set
var n = new int[subSetLenght];
for (int i = 0; i < subSetLenght; i++)
n[i] = prevSubSet[i];
result.Add(n);
if (prevSubSet[0] >= lastSubSet[0])
break;
//start at index 1 because index 0 is checked and breaking in the current loop
int j = 1;
for (; j < subSetLenght; j++)
{
if (prevSubSet[j] >= lastSubSet[j])
{
prevSubSet[j - 1]++;
for (int p = j; p < subSetLenght; p++)
prevSubSet[p] = prevSubSet[p - 1] + 1;
break;
}
}
if (j > lastIndex)
prevSubSet[lastIndex]++;
}
return result;
}