我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

用c#的另一个解决方案:

 static List<List<T>> GetCombinations<T>(List<T> originalItems, int combinationLength)
    {
        if (combinationLength < 1)
        {
            return null;
        }

        return CreateCombinations<T>(new List<T>(), 0, combinationLength, originalItems);
    }

 static List<List<T>> CreateCombinations<T>(List<T> initialCombination, int startIndex, int length, List<T> originalItems)
    {
        List<List<T>> combinations = new List<List<T>>();
        for (int i = startIndex; i < originalItems.Count - length + 1; i++)
        {
            List<T> newCombination = new List<T>(initialCombination);
            newCombination.Add(originalItems[i]);
            if (length > 1)
            {
                List<List<T>> newCombinations = CreateCombinations(newCombination, i + 1, length - 1, originalItems);
                combinations.AddRange(newCombinations);
            }
            else
            {
                combinations.Add(newCombination);
            }
        }

        return combinations;
    }

用法示例:

   List<char> initialArray = new List<char>() { 'a','b','c','d'};
   int combinationLength = 3;
   List<List<char>> combinations = GetCombinations(initialArray, combinationLength);

其他回答

下面是我最近用Java写的一段代码,它计算并返回从“outOf”元素中“num”元素的所有组合。

// author: Sourabh Bhat (heySourabh@gmail.com)

public class Testing
{
    public static void main(String[] args)
    {

// Test case num = 5, outOf = 8.

        int num = 5;
        int outOf = 8;
        int[][] combinations = getCombinations(num, outOf);
        for (int i = 0; i < combinations.length; i++)
        {
            for (int j = 0; j < combinations[i].length; j++)
            {
                System.out.print(combinations[i][j] + " ");
            }
            System.out.println();
        }
    }

    private static int[][] getCombinations(int num, int outOf)
    {
        int possibilities = get_nCr(outOf, num);
        int[][] combinations = new int[possibilities][num];
        int arrayPointer = 0;

        int[] counter = new int[num];

        for (int i = 0; i < num; i++)
        {
            counter[i] = i;
        }
        breakLoop: while (true)
        {
            // Initializing part
            for (int i = 1; i < num; i++)
            {
                if (counter[i] >= outOf - (num - 1 - i))
                    counter[i] = counter[i - 1] + 1;
            }

            // Testing part
            for (int i = 0; i < num; i++)
            {
                if (counter[i] < outOf)
                {
                    continue;
                } else
                {
                    break breakLoop;
                }
            }

            // Innermost part
            combinations[arrayPointer] = counter.clone();
            arrayPointer++;

            // Incrementing part
            counter[num - 1]++;
            for (int i = num - 1; i >= 1; i--)
            {
                if (counter[i] >= outOf - (num - 1 - i))
                    counter[i - 1]++;
            }
        }

        return combinations;
    }

    private static int get_nCr(int n, int r)
    {
        if(r > n)
        {
            throw new ArithmeticException("r is greater then n");
        }
        long numerator = 1;
        long denominator = 1;
        for (int i = n; i >= r + 1; i--)
        {
            numerator *= i;
        }
        for (int i = 2; i <= n - r; i++)
        {
            denominator *= i;
        }

        return (int) (numerator / denominator);
    }
}

基于java解决方案的短php算法返回k元素从n(二项式系数)的所有组合:

$array = array(1,2,3,4,5);

$array_result = NULL;

$array_general = NULL;

function combinations($array, $len, $start_position, $result_array, $result_len, &$general_array)
{
    if($len == 0)
    {
        $general_array[] = $result_array;
        return;
    }

    for ($i = $start_position; $i <= count($array) - $len; $i++)
    {
        $result_array[$result_len - $len] = $array[$i];
        combinations($array, $len-1, $i+1, $result_array, $result_len, $general_array);
    }
} 

combinations($array, 3, 0, $array_result, 3, $array_general);

echo "<pre>";
print_r($array_general);
echo "</pre>";

相同的解决方案,但在javascript:

var newArray = [1, 2, 3, 4, 5];
var arrayResult = [];
var arrayGeneral = [];

function combinations(newArray, len, startPosition, resultArray, resultLen, arrayGeneral) {
    if(len === 0) {
        var tempArray = [];
        resultArray.forEach(value => tempArray.push(value));
        arrayGeneral.push(tempArray);
        return;
    }
    for (var i = startPosition; i <= newArray.length - len; i++) {
        resultArray[resultLen - len] = newArray[i];
        combinations(newArray, len-1, i+1, resultArray, resultLen, arrayGeneral);
    }
} 

combinations(newArray, 3, 0, arrayResult, 3, arrayGeneral);

console.log(arrayGeneral);

说了这么多,做了这么多,这就是奥卡姆的代码。 算法是显而易见的代码..

let combi n lst =
    let rec comb l c =
        if( List.length c = n) then [c] else
        match l with
        [] -> []
        | (h::t) -> (combi t (h::c))@(combi t c)
    in
        combi lst []
;;

《计算机编程艺术,卷4A:组合算法,第1部分》第7.2.1.3节中算法L(字典组合)的C代码:

#include <stdio.h>
#include <stdlib.h>

void visit(int* c, int t) 
{
  // for (int j = 1; j <= t; j++)
  for (int j = t; j > 0; j--)
    printf("%d ", c[j]);
  printf("\n");
}

int* initialize(int n, int t) 
{
  // c[0] not used
  int *c = (int*) malloc((t + 3) * sizeof(int));

  for (int j = 1; j <= t; j++)
    c[j] = j - 1;
  c[t+1] = n;
  c[t+2] = 0;
  return c;
}

void comb(int n, int t) 
{
  int *c = initialize(n, t);
  int j;

  for (;;) {
    visit(c, t);
    j = 1;
    while (c[j]+1 == c[j+1]) {
      c[j] = j - 1;
      ++j;
    }
    if (j > t) 
      return;
    ++c[j];
  }
  free(c);
}

int main(int argc, char *argv[])
{
  comb(5, 3);
  return 0;
}

递归,一个很简单的答案,combo,在Free Pascal中。

    procedure combinata (n, k :integer; producer :oneintproc);

        procedure combo (ndx, nbr, len, lnd :integer);
        begin
            for nbr := nbr to len do begin
                productarray[ndx] := nbr;
                if len < lnd then
                    combo(ndx+1,nbr+1,len+1,lnd)
                else
                    producer(k);
            end;
        end;

    begin
        combo (0, 0, n-k, n-1);
    end;

“producer”处理为每个组合生成的产品数组。