我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

你可以使用Asif算法来生成所有可能的组合。这可能是最简单和最有效的方法。你可以在这里查看媒体文章。

让我们看看JavaScript中的实现。

function Combinations( arr, r ) {
    // To avoid object referencing, cloning the array.
    arr = arr && arr.slice() || [];

    var len = arr.length;

    if( !len || r > len || !r )
        return [ [] ];
    else if( r === len ) 
        return [ arr ];

    if( r === len ) return arr.reduce( ( x, v ) => {
        x.push( [ v ] );

        return x;
    }, [] );

    var head = arr.shift();

    return Combinations( arr, r - 1 ).map( x => {
        x.unshift( head );

        return x;
    } ).concat( Combinations( arr, r ) );
}

// Now do your stuff.

console.log( Combinations( [ 'a', 'b', 'c', 'd', 'e' ], 3 ) );

其他回答

下面的递归算法从有序集中选取所有k元素组合:

选择组合中的第一个元素I 将I与从大于I的元素集中递归选择的k-1个元素的组合组合。

对集合中的每一个i进行上述迭代。

为了避免重复,您必须选择比i大的其余元素。这样[3,5]将只被选中一次,即[3]与[5]结合,而不是两次(该条件消除了[5]+[3])。没有这个条件,你得到的是变化而不是组合。

Here's some simple code that prints all the C(n,m) combinations. It works by initializing and moving a set of array indices that point to next valid combination. The indices are initialized to point to the lowest m indices (lexicographically the smallest combination). Then on, starting with the m-th index, we try to move the indices forward. if an index has reached its limit, we try the previous index (all the way down to index 1). If we can move an index forward, then we reset all greater indices.

m=(rand()%n)+1; // m will vary from 1 to n

for (i=0;i<n;i++) a[i]=i+1;

// we want to print all possible C(n,m) combinations of selecting m objects out of n
printf("Printing C(%d,%d) possible combinations ...\n", n,m);

// This is an adhoc algo that keeps m pointers to the next valid combination
for (i=0;i<m;i++) p[i]=i; // the p[.] contain indices to the a vector whose elements constitute next combination

done=false;
while (!done)
{
    // print combination
    for (i=0;i<m;i++) printf("%2d ", a[p[i]]);
    printf("\n");

    // update combination
    // method: start with p[m-1]. try to increment it. if it is already at the end, then try moving p[m-2] ahead.
    // if this is possible, then reset p[m-1] to 1 more than (the new) p[m-2].
    // if p[m-2] can not also be moved, then try p[m-3]. move that ahead. then reset p[m-2] and p[m-1].
    // repeat all the way down to p[0]. if p[0] can not also be moved, then we have generated all combinations.
    j=m-1;
    i=1;
    move_found=false;
    while ((j>=0) && !move_found)
    {
        if (p[j]<(n-i)) 
        {
            move_found=true;
            p[j]++; // point p[j] to next index
            for (k=j+1;k<m;k++)
            {
                p[k]=p[j]+(k-j);
            }
        }
        else
        {
            j--;
            i++;
        }
    }
    if (!move_found) done=true;
}

我发现这个线程很有用,我想我会添加一个Javascript解决方案,你可以弹出到Firebug。取决于你的JS引擎,如果起始字符串很大,可能会花一点时间。

function string_recurse(active, rest) {
    if (rest.length == 0) {
        console.log(active);
    } else {
        string_recurse(active + rest.charAt(0), rest.substring(1, rest.length));
        string_recurse(active, rest.substring(1, rest.length));
    }
}
string_recurse("", "abc");

输出如下:

abc
ab
ac
a
bc
b
c

在VB。Net,该算法从一组数字(PoolArray)中收集n个数字的所有组合。例如,从“8,10,20,33,41,44,47”中选择5个选项的所有组合。

Sub CreateAllCombinationsOfPicksFromPool(ByVal PicksArray() As UInteger, ByVal PicksIndex As UInteger, ByVal PoolArray() As UInteger, ByVal PoolIndex As UInteger)
    If PicksIndex < PicksArray.Length Then
        For i As Integer = PoolIndex To PoolArray.Length - PicksArray.Length + PicksIndex
            PicksArray(PicksIndex) = PoolArray(i)
            CreateAllCombinationsOfPicksFromPool(PicksArray, PicksIndex + 1, PoolArray, i + 1)
        Next
    Else
        ' completed combination. build your collections using PicksArray.
    End If
End Sub

        Dim PoolArray() As UInteger = Array.ConvertAll("8,10,20,33,41,44,47".Split(","), Function(u) UInteger.Parse(u))
        Dim nPicks as UInteger = 5
        Dim Picks(nPicks - 1) As UInteger
        CreateAllCombinationsOfPicksFromPool(Picks, 0, PoolArray, 0)

假设你的字母数组是这样的:"ABCDEFGH"。你有三个下标(i, j, k)来表示你要用哪个字母来表示当前单词。

A B C D E F G H
^ ^ ^
i j k

首先你改变k,所以下一步看起来像这样:

A B C D E F G H
^ ^   ^
i j   k

如果你到达终点,你继续改变j和k。

A B C D E F G H
^   ^ ^
i   j k

A B C D E F G H
^   ^   ^
i   j   k

一旦j达到G, i也开始变化。

A B C D E F G H
  ^ ^ ^
  i j k

A B C D E F G H
  ^ ^   ^
  i j   k
...

用代码写出来是这样的

void print_combinations(const char *string)
{
    int i, j, k;
    int len = strlen(string);

    for (i = 0; i < len - 2; i++)
    {
        for (j = i + 1; j < len - 1; j++)
        {
            for (k = j + 1; k < len; k++)
                printf("%c%c%c\n", string[i], string[j], string[k]);
        }
    }
}