我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
当前回答
作为迭代器对象实现的MetaTrader MQL4非常快速的组合。
代码很容易理解。
我对很多算法进行了基准测试,这个算法真的非常快——大约比大多数next_combination()函数快3倍。
class CombinationsIterator { private: int input_array[]; // 1 2 3 4 5 int index_array[]; // i j k int m_elements; // N int m_indices; // K public: CombinationsIterator(int &src_data[], int k) { m_indices = k; m_elements = ArraySize(src_data); ArrayCopy(input_array, src_data); ArrayResize(index_array, m_indices); // create initial combination (0..k-1) for (int i = 0; i < m_indices; i++) { index_array[i] = i; } } // https://stackoverflow.com/questions/5076695 // bool next_combination(int &item[], int k, int N) bool advance() { int N = m_elements; for (int i = m_indices - 1; i >= 0; --i) { if (index_array[i] < --N) { ++index_array[i]; for (int j = i + 1; j < m_indices; ++j) { index_array[j] = index_array[j - 1] + 1; } return true; } } return false; } void getItems(int &items[]) { // fill items[] from input array for (int i = 0; i < m_indices; i++) { items[i] = input_array[index_array[i]]; } } };
测试上述迭代器类的驱动程序:
//+------------------------------------------------------------------+ //| | //+------------------------------------------------------------------+ // driver program to test above class #define N 5 #define K 3 void OnStart() { int myset[N] = {1, 2, 3, 4, 5}; int items[K]; CombinationsIterator comboIt(myset, K); do { comboIt.getItems(items); printf("%s", ArrayToString(items)); } while (comboIt.advance()); }
输出: 1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 2 3 4 2 3 5 2 4 5 3 4 5
其他回答
也许我错过了重点(你需要的是算法,而不是现成的解决方案),但看起来scala已经开箱即用了(现在):
def combis(str:String, k:Int):Array[String] = {
str.combinations(k).toArray
}
使用这样的方法:
println(combis("abcd",2).toList)
会产生:
List(ab, ac, ad, bc, bd, cd)
简单但缓慢的c++回溯算法。
#include <iostream>
void backtrack(int* numbers, int n, int k, int i, int s)
{
if (i == k)
{
for (int j = 0; j < k; ++j)
{
std::cout << numbers[j];
}
std::cout << std::endl;
return;
}
if (s > n)
{
return;
}
numbers[i] = s;
backtrack(numbers, n, k, i + 1, s + 1);
backtrack(numbers, n, k, i, s + 1);
}
int main(int argc, char* argv[])
{
int n = 5;
int k = 3;
int* numbers = new int[k];
backtrack(numbers, n, k, 0, 1);
delete[] numbers;
return 0;
}
说了这么多,做了这么多,这就是奥卡姆的代码。 算法是显而易见的代码..
let combi n lst =
let rec comb l c =
if( List.length c = n) then [c] else
match l with
[] -> []
| (h::t) -> (combi t (h::c))@(combi t c)
in
combi lst []
;;
下面是我的JavaScript解决方案,通过使用reduce/map,它消除了几乎所有变量,功能更强大
function combinations(arr, size) { var len = arr.length; if (size > len) return []; if (!size) return [[]]; if (size == len) return [arr]; return arr.reduce(function (acc, val, i) { var res = combinations(arr.slice(i + 1), size - 1) .map(function (comb) { return [val].concat(comb); }); return acc.concat(res); }, []); } var combs = combinations([1,2,3,4,5,6,7,8],3); combs.map(function (comb) { document.body.innerHTML += comb.toString() + '<br />'; }); document.body.innerHTML += '<br /> Total combinations = ' + combs.length;
递归,一个很简单的答案,combo,在Free Pascal中。
procedure combinata (n, k :integer; producer :oneintproc);
procedure combo (ndx, nbr, len, lnd :integer);
begin
for nbr := nbr to len do begin
productarray[ndx] := nbr;
if len < lnd then
combo(ndx+1,nbr+1,len+1,lnd)
else
producer(k);
end;
end;
begin
combo (0, 0, n-k, n-1);
end;
“producer”处理为每个组合生成的产品数组。