我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

也许我错过了重点(你需要的是算法,而不是现成的解决方案),但看起来scala已经开箱即用了(现在):

def combis(str:String, k:Int):Array[String] = {
  str.combinations(k).toArray 
}

使用这样的方法:

  println(combis("abcd",2).toList)

会产生:

  List(ab, ac, ad, bc, bd, cd)

其他回答

简短javascript版本(es5)

令combine = (list, n) => N == 0 ? [[]]: 列表。flatMap((e, i) => 结合( 列表。切片(i + 1) N - 1 ).Map (c => [e].concat(c)) ); Let res = combine([1,2,3,4], 3); res.forEach(e => console.log(e.join()));

这是我想出的解决这个问题的算法。它是用c++编写的,但是可以适应几乎任何支持位操作的语言。

void r_nCr(const unsigned int &startNum, const unsigned int &bitVal, const unsigned int &testNum) // Should be called with arguments (2^r)-1, 2^(r-1), 2^(n-1)
{
    unsigned int n = (startNum - bitVal) << 1;
    n += bitVal ? 1 : 0;

    for (unsigned int i = log2(testNum) + 1; i > 0; i--) // Prints combination as a series of 1s and 0s
        cout << (n >> (i - 1) & 1);
    cout << endl;

    if (!(n & testNum) && n != startNum)
        r_nCr(n, bitVal, testNum);

    if (bitVal && bitVal < testNum)
        r_nCr(startNum, bitVal >> 1, testNum);
}

你可以在这里看到它如何工作的解释。

说了这么多,做了这么多,这就是奥卡姆的代码。 算法是显而易见的代码..

let combi n lst =
    let rec comb l c =
        if( List.length c = n) then [c] else
        match l with
        [] -> []
        | (h::t) -> (combi t (h::c))@(combi t c)
    in
        combi lst []
;;

最近在IronScripter网站上有一个PowerShell挑战,需要一个n- choice -k的解决方案。我在那里发布了一个解决方案,但这里有一个更通用的版本。

AllK开关用于控制输出是长度为ChooseK的组合,还是长度为1到ChooseK的组合。 Prefix参数实际上是输出字符串的累加器,但其效果是为初始调用传递的值实际上会为每一行输出添加前缀。

function Get-NChooseK
{

    [CmdletBinding()]

    Param
    (

        [String[]]
        $ArrayN

    ,   [Int]
        $ChooseK

    ,   [Switch]
        $AllK

    ,   [String]
        $Prefix = ''

    )

    PROCESS
    {
        # Validate the inputs
        $ArrayN = $ArrayN | Sort-Object -Unique

        If ($ChooseK -gt $ArrayN.Length)
        {
            Write-Error "Can't choose $ChooseK items when only $($ArrayN.Length) are available." -ErrorAction Stop
        }

        # Control the output
        $firstK = If ($AllK) { 1 } Else { $ChooseK }

        # Get combinations
        $firstK..$ChooseK | ForEach-Object {

            $thisK = $_

            $ArrayN[0..($ArrayN.Length-($thisK--))] | ForEach-Object {
                If ($thisK -eq 0)
                {
                    Write-Output ($Prefix+$_)
                }
                Else
                {
                    Get-NChooseK -Array ($ArrayN[($ArrayN.IndexOf($_)+1)..($ArrayN.Length-1)]) -Choose $thisK -AllK:$false -Prefix ($Prefix+$_)
                }
            }

        }
    }

}

例如:

PS C:\>$ArrayN  = 'E','B','C','A','D'
PS C:\>$ChooseK = 3
PS C:\>Get-NChooseK -ArrayN $ArrayN -ChooseK $ChooseK
ABC
ABD
ABE
ACD
ACE
ADE
BCD
BCE
BDE
CDE

简单但缓慢的c++回溯算法。

#include <iostream>

void backtrack(int* numbers, int n, int k, int i, int s)
{
    if (i == k)
    {
        for (int j = 0; j < k; ++j)
        {
            std::cout << numbers[j];
        }
        std::cout << std::endl;

        return;
    }

    if (s > n)
    {
        return;
    }

    numbers[i] = s;
    backtrack(numbers, n, k, i + 1, s + 1);
    backtrack(numbers, n, k, i, s + 1);
}

int main(int argc, char* argv[])
{
    int n = 5;
    int k = 3;

    int* numbers = new int[k];

    backtrack(numbers, n, k, 0, 1);

    delete[] numbers;

    return 0;
}