我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
当前回答
另一个具有组合索引惰性生成的c#版本。这个版本维护了一个索引数组来定义所有值列表和当前组合值之间的映射,即在整个运行时不断使用O(k)额外的空间。该代码在O(k)时间内生成单个组合,包括第一个组合。
public static IEnumerable<T[]> Combinations<T>(this T[] values, int k)
{
if (k < 0 || values.Length < k)
yield break; // invalid parameters, no combinations possible
// generate the initial combination indices
var combIndices = new int[k];
for (var i = 0; i < k; i++)
{
combIndices[i] = i;
}
while (true)
{
// return next combination
var combination = new T[k];
for (var i = 0; i < k; i++)
{
combination[i] = values[combIndices[i]];
}
yield return combination;
// find first index to update
var indexToUpdate = k - 1;
while (indexToUpdate >= 0 && combIndices[indexToUpdate] >= values.Length - k + indexToUpdate)
{
indexToUpdate--;
}
if (indexToUpdate < 0)
yield break; // done
// update combination indices
for (var combIndex = combIndices[indexToUpdate] + 1; indexToUpdate < k; indexToUpdate++, combIndex++)
{
combIndices[indexToUpdate] = combIndex;
}
}
}
测试代码:
foreach (var combination in new[] {'a', 'b', 'c', 'd', 'e'}.Combinations(3))
{
System.Console.WriteLine(String.Join(" ", combination));
}
输出:
a b c
a b d
a b e
a c d
a c e
a d e
b c d
b c e
b d e
c d e
其他回答
我知道这个问题已经有很多答案了,但我想在JavaScript中添加我自己的贡献,它由两个函数组成——一个生成原始n元素集的所有可能不同的k子集,另一个使用第一个函数生成原始n元素集的幂集。
下面是这两个函数的代码:
//Generate combination subsets from a base set of elements (passed as an array). This function should generate an
//array containing nCr elements, where nCr = n!/[r! (n-r)!].
//Arguments:
//[1] baseSet : The base set to create the subsets from (e.g., ["a", "b", "c", "d", "e", "f"])
//[2] cnt : The number of elements each subset is to contain (e.g., 3)
function MakeCombinationSubsets(baseSet, cnt)
{
var bLen = baseSet.length;
var indices = [];
var subSet = [];
var done = false;
var result = []; //Contains all the combination subsets generated
var done = false;
var i = 0;
var idx = 0;
var tmpIdx = 0;
var incr = 0;
var test = 0;
var newIndex = 0;
var inBounds = false;
var tmpIndices = [];
var checkBounds = false;
//First, generate an array whose elements are indices into the base set ...
for (i=0; i<cnt; i++)
indices.push(i);
//Now create a clone of this array, to be used in the loop itself ...
tmpIndices = [];
tmpIndices = tmpIndices.concat(indices);
//Now initialise the loop ...
idx = cnt - 1; //point to the last element of the indices array
incr = 0;
done = false;
while (!done)
{
//Create the current subset ...
subSet = []; //Make sure we begin with a completely empty subset before continuing ...
for (i=0; i<cnt; i++)
subSet.push(baseSet[tmpIndices[i]]); //Create the current subset, using items selected from the
//base set, using the indices array (which will change as we
//continue scanning) ...
//Add the subset thus created to the result set ...
result.push(subSet);
//Now update the indices used to select the elements of the subset. At the start, idx will point to the
//rightmost index in the indices array, but the moment that index moves out of bounds with respect to the
//base set, attention will be shifted to the next left index.
test = tmpIndices[idx] + 1;
if (test >= bLen)
{
//Here, we're about to move out of bounds with respect to the base set. We therefore need to scan back,
//and update indices to the left of the current one. Find the leftmost index in the indices array that
//isn't going to move out of bounds with respect to the base set ...
tmpIdx = idx - 1;
incr = 1;
inBounds = false; //Assume at start that the index we're checking in the loop below is out of bounds
checkBounds = true;
while (checkBounds)
{
if (tmpIdx < 0)
{
checkBounds = false; //Exit immediately at this point
}
else
{
newIndex = tmpIndices[tmpIdx] + 1;
test = newIndex + incr;
if (test >= bLen)
{
//Here, incrementing the current selected index will take that index out of bounds, so
//we move on to the next index to the left ...
tmpIdx--;
incr++;
}
else
{
//Here, the index will remain in bounds if we increment it, so we
//exit the loop and signal that we're in bounds ...
inBounds = true;
checkBounds = false;
//End if/else
}
//End if
}
//End while
}
//At this point, if we'er still in bounds, then we continue generating subsets, but if not, we abort immediately.
if (!inBounds)
done = true;
else
{
//Here, we're still in bounds. We need to update the indices accordingly. NOTE: at this point, although a
//left positioned index in the indices array may still be in bounds, incrementing it to generate indices to
//the right may take those indices out of bounds. We therefore need to check this as we perform the index
//updating of the indices array.
tmpIndices[tmpIdx] = newIndex;
inBounds = true;
checking = true;
i = tmpIdx + 1;
while (checking)
{
test = tmpIndices[i - 1] + 1; //Find out if incrementing the left adjacent index takes it out of bounds
if (test >= bLen)
{
inBounds = false; //If we move out of bounds, exit NOW ...
checking = false;
}
else
{
tmpIndices[i] = test; //Otherwise, update the indices array ...
i++; //Now move on to the next index to the right in the indices array ...
checking = (i < cnt); //And continue until we've exhausted all the indices array elements ...
//End if/else
}
//End while
}
//At this point, if the above updating of the indices array has moved any of its elements out of bounds,
//we abort subset construction from this point ...
if (!inBounds)
done = true;
//End if/else
}
}
else
{
//Here, the rightmost index under consideration isn't moving out of bounds with respect to the base set when
//we increment it, so we simply increment and continue the loop ...
tmpIndices[idx] = test;
//End if
}
//End while
}
return(result);
//End function
}
function MakePowerSet(baseSet)
{
var bLen = baseSet.length;
var result = [];
var i = 0;
var partialSet = [];
result.push([]); //add the empty set to the power set
for (i=1; i<bLen; i++)
{
partialSet = MakeCombinationSubsets(baseSet, i);
result = result.concat(partialSet);
//End i loop
}
//Now, finally, add the base set itself to the power set to make it complete ...
partialSet = [];
partialSet.push(baseSet);
result = result.concat(partialSet);
return(result);
//End function
}
我用集合["a", "b", "c", "d", "e", "f"]作为基本集进行了测试,并运行代码以产生以下幂集:
[]
["a"]
["b"]
["c"]
["d"]
["e"]
["f"]
["a","b"]
["a","c"]
["a","d"]
["a","e"]
["a","f"]
["b","c"]
["b","d"]
["b","e"]
["b","f"]
["c","d"]
["c","e"]
["c","f"]
["d","e"]
["d","f"]
["e","f"]
["a","b","c"]
["a","b","d"]
["a","b","e"]
["a","b","f"]
["a","c","d"]
["a","c","e"]
["a","c","f"]
["a","d","e"]
["a","d","f"]
["a","e","f"]
["b","c","d"]
["b","c","e"]
["b","c","f"]
["b","d","e"]
["b","d","f"]
["b","e","f"]
["c","d","e"]
["c","d","f"]
["c","e","f"]
["d","e","f"]
["a","b","c","d"]
["a","b","c","e"]
["a","b","c","f"]
["a","b","d","e"]
["a","b","d","f"]
["a","b","e","f"]
["a","c","d","e"]
["a","c","d","f"]
["a","c","e","f"]
["a","d","e","f"]
["b","c","d","e"]
["b","c","d","f"]
["b","c","e","f"]
["b","d","e","f"]
["c","d","e","f"]
["a","b","c","d","e"]
["a","b","c","d","f"]
["a","b","c","e","f"]
["a","b","d","e","f"]
["a","c","d","e","f"]
["b","c","d","e","f"]
["a","b","c","d","e","f"]
只要复制粘贴这两个函数“原样”,你就有了提取n元素集的不同k子集所需的基本知识,并生成该n元素集的幂集(如果你愿意的话)。
我并不是说这很优雅,只是说它在经过大量的测试(并在调试阶段将空气变为蓝色:)之后可以工作。
下面的递归算法从有序集中选取所有k元素组合:
选择组合中的第一个元素I 将I与从大于I的元素集中递归选择的k-1个元素的组合组合。
对集合中的每一个i进行上述迭代。
为了避免重复,您必须选择比i大的其余元素。这样[3,5]将只被选中一次,即[3]与[5]结合,而不是两次(该条件消除了[5]+[3])。没有这个条件,你得到的是变化而不是组合。
现在又出现了祖辈COBOL,一种饱受诟病的语言。
让我们假设一个包含34个元素的数组,每个元素8个字节(完全是任意选择)。其思想是枚举所有可能的4元素组合,并将它们加载到一个数组中。
我们使用4个指标,每个指标代表4个组中的每个位置
数组是这样处理的:
idx1 = 1
idx2 = 2
idx3 = 3
idx4 = 4
我们把idx4从4变到最后。对于每个idx4,我们得到一个唯一的组合 四人一组。当idx4到达数组的末尾时,我们将idx3增加1,并将idx4设置为idx3+1。然后再次运行idx4到最后。我们以这种方式继续,分别增加idx3、idx2和idx1,直到idx1的位置距离数组末端小于4。算法就完成了。
1 --- pos.1
2 --- pos 2
3 --- pos 3
4 --- pos 4
5
6
7
etc.
第一次迭代:
1234
1235
1236
1237
1245
1246
1247
1256
1257
1267
etc.
一个COBOL的例子:
01 DATA_ARAY.
05 FILLER PIC X(8) VALUE "VALUE_01".
05 FILLER PIC X(8) VALUE "VALUE_02".
etc.
01 ARAY_DATA OCCURS 34.
05 ARAY_ITEM PIC X(8).
01 OUTPUT_ARAY OCCURS 50000 PIC X(32).
01 MAX_NUM PIC 99 COMP VALUE 34.
01 INDEXXES COMP.
05 IDX1 PIC 99.
05 IDX2 PIC 99.
05 IDX3 PIC 99.
05 IDX4 PIC 99.
05 OUT_IDX PIC 9(9).
01 WHERE_TO_STOP_SEARCH PIC 99 COMP.
* Stop the search when IDX1 is on the third last array element:
COMPUTE WHERE_TO_STOP_SEARCH = MAX_VALUE - 3
MOVE 1 TO IDX1
PERFORM UNTIL IDX1 > WHERE_TO_STOP_SEARCH
COMPUTE IDX2 = IDX1 + 1
PERFORM UNTIL IDX2 > MAX_NUM
COMPUTE IDX3 = IDX2 + 1
PERFORM UNTIL IDX3 > MAX_NUM
COMPUTE IDX4 = IDX3 + 1
PERFORM UNTIL IDX4 > MAX_NUM
ADD 1 TO OUT_IDX
STRING ARAY_ITEM(IDX1)
ARAY_ITEM(IDX2)
ARAY_ITEM(IDX3)
ARAY_ITEM(IDX4)
INTO OUTPUT_ARAY(OUT_IDX)
ADD 1 TO IDX4
END-PERFORM
ADD 1 TO IDX3
END-PERFORM
ADD 1 TO IDX2
END_PERFORM
ADD 1 TO IDX1
END-PERFORM.
像Andrea Ambu一样用Python写的,但不是硬编码来选择三个。
def combinations(list, k):
"""Choose combinations of list, choosing k elements(no repeats)"""
if len(list) < k:
return []
else:
seq = [i for i in range(k)]
while seq:
print [list[index] for index in seq]
seq = get_next_combination(len(list), k, seq)
def get_next_combination(num_elements, k, seq):
index_to_move = find_index_to_move(num_elements, seq)
if index_to_move == None:
return None
else:
seq[index_to_move] += 1
#for every element past this sequence, move it down
for i, elem in enumerate(seq[(index_to_move+1):]):
seq[i + 1 + index_to_move] = seq[index_to_move] + i + 1
return seq
def find_index_to_move(num_elements, seq):
"""Tells which index should be moved"""
for rev_index, elem in enumerate(reversed(seq)):
if elem < (num_elements - rev_index - 1):
return len(seq) - rev_index - 1
return None
这是一个优雅的Scala通用实现,如99个Scala问题所述。
object P26 {
def flatMapSublists[A,B](ls: List[A])(f: (List[A]) => List[B]): List[B] =
ls match {
case Nil => Nil
case sublist@(_ :: tail) => f(sublist) ::: flatMapSublists(tail)(f)
}
def combinations[A](n: Int, ls: List[A]): List[List[A]] =
if (n == 0) List(Nil)
else flatMapSublists(ls) { sl =>
combinations(n - 1, sl.tail) map {sl.head :: _}
}
}