我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
当前回答
另一个具有组合索引惰性生成的c#版本。这个版本维护了一个索引数组来定义所有值列表和当前组合值之间的映射,即在整个运行时不断使用O(k)额外的空间。该代码在O(k)时间内生成单个组合,包括第一个组合。
public static IEnumerable<T[]> Combinations<T>(this T[] values, int k)
{
if (k < 0 || values.Length < k)
yield break; // invalid parameters, no combinations possible
// generate the initial combination indices
var combIndices = new int[k];
for (var i = 0; i < k; i++)
{
combIndices[i] = i;
}
while (true)
{
// return next combination
var combination = new T[k];
for (var i = 0; i < k; i++)
{
combination[i] = values[combIndices[i]];
}
yield return combination;
// find first index to update
var indexToUpdate = k - 1;
while (indexToUpdate >= 0 && combIndices[indexToUpdate] >= values.Length - k + indexToUpdate)
{
indexToUpdate--;
}
if (indexToUpdate < 0)
yield break; // done
// update combination indices
for (var combIndex = combIndices[indexToUpdate] + 1; indexToUpdate < k; indexToUpdate++, combIndex++)
{
combIndices[indexToUpdate] = combIndex;
}
}
}
测试代码:
foreach (var combination in new[] {'a', 'b', 'c', 'd', 'e'}.Combinations(3))
{
System.Console.WriteLine(String.Join(" ", combination));
}
输出:
a b c
a b d
a b e
a c d
a c e
a d e
b c d
b c e
b d e
c d e
其他回答
另一种python递归解决方案。
def combination_indicies(n, k, j = 0, stack = []):
if len(stack) == k:
yield list(stack)
return
for i in range(j, n):
stack.append(i)
for x in combination_indicies(n, k, i + 1, stack):
yield x
stack.pop()
list(combination_indicies(5, 3))
输出:
[[0, 1, 2],
[0, 1, 3],
[0, 1, 4],
[0, 2, 3],
[0, 2, 4],
[0, 3, 4],
[1, 2, 3],
[1, 2, 4],
[1, 3, 4],
[2, 3, 4]]
假设你的字母数组是这样的:"ABCDEFGH"。你有三个下标(i, j, k)来表示你要用哪个字母来表示当前单词。
A B C D E F G H ^ ^ ^ i j k
首先你改变k,所以下一步看起来像这样:
A B C D E F G H ^ ^ ^ i j k
如果你到达终点,你继续改变j和k。
A B C D E F G H ^ ^ ^ i j k A B C D E F G H ^ ^ ^ i j k
一旦j达到G, i也开始变化。
A B C D E F G H ^ ^ ^ i j k A B C D E F G H ^ ^ ^ i j k ...
function initializePointers($cnt) {
$pointers = [];
for($i=0; $i<$cnt; $i++) {
$pointers[] = $i;
}
return $pointers;
}
function incrementPointers(&$pointers, &$arrLength) {
for($i=0; $i<count($pointers); $i++) {
$currentPointerIndex = count($pointers) - $i - 1;
$currentPointer = $pointers[$currentPointerIndex];
if($currentPointer < $arrLength - $i - 1) {
++$pointers[$currentPointerIndex];
for($j=1; ($currentPointerIndex+$j)<count($pointers); $j++) {
$pointers[$currentPointerIndex+$j] = $pointers[$currentPointerIndex]+$j;
}
return true;
}
}
return false;
}
function getDataByPointers(&$arr, &$pointers) {
$data = [];
for($i=0; $i<count($pointers); $i++) {
$data[] = $arr[$pointers[$i]];
}
return $data;
}
function getCombinations($arr, $cnt)
{
$len = count($arr);
$result = [];
$pointers = initializePointers($cnt);
do {
$result[] = getDataByPointers($arr, $pointers);
} while(incrementPointers($pointers, count($arr)));
return $result;
}
$result = getCombinations([0, 1, 2, 3, 4, 5], 3);
print_r($result);
基于https://stackoverflow.com/a/127898/2628125,但更抽象,适用于任何大小的指针。
PowerShell解决方案:
function Get-NChooseK
{
<#
.SYNOPSIS
Returns all the possible combinations by choosing K items at a time from N possible items.
.DESCRIPTION
Returns all the possible combinations by choosing K items at a time from N possible items.
The combinations returned do not consider the order of items as important i.e. 123 is considered to be the same combination as 231, etc.
.PARAMETER ArrayN
The array of items to choose from.
.PARAMETER ChooseK
The number of items to choose.
.PARAMETER AllK
Includes combinations for all lesser values of K above zero i.e. 1 to K.
.PARAMETER Prefix
String that will prefix each line of the output.
.EXAMPLE
PS C:\> Get-NChooseK -ArrayN '1','2','3' -ChooseK 3
123
.EXAMPLE
PS C:\> Get-NChooseK -ArrayN '1','2','3' -ChooseK 3 -AllK
1
2
3
12
13
23
123
.EXAMPLE
PS C:\> Get-NChooseK -ArrayN '1','2','3' -ChooseK 2 -Prefix 'Combo: '
Combo: 12
Combo: 13
Combo: 23
.NOTES
Author : nmbell
#>
# Use cmdlet binding
[CmdletBinding()]
# Declare parameters
Param
(
[String[]]
$ArrayN
, [Int]
$ChooseK
, [Switch]
$AllK
, [String]
$Prefix = ''
)
BEGIN
{
}
PROCESS
{
# Validate the inputs
$ArrayN = $ArrayN | Sort-Object -Unique
If ($ChooseK -gt $ArrayN.Length)
{
Write-Error "Can't choose $ChooseK items when only $($ArrayN.Length) are available." -ErrorAction Stop
}
# Control the output
$firstK = If ($AllK) { 1 } Else { $ChooseK }
# Get combinations
$firstK..$ChooseK | ForEach-Object {
$thisK = $_
$ArrayN[0..($ArrayN.Length-($thisK--))] | ForEach-Object {
If ($thisK -eq 0)
{
Write-Output ($Prefix+$_)
}
Else
{
Get-NChooseK -Array ($ArrayN[($ArrayN.IndexOf($_)+1)..($ArrayN.Length-1)]) -Choose $thisK -AllK:$false -Prefix ($Prefix+$_)
}
}
}
}
END
{
}
}
例如:
PS C:\>Get-NChooseK -ArrayN 'A','B','C','D','E' -ChooseK 3
ABC
ABD
ABE
ACD
ACE
ADE
BCD
BCE
BDE
CDE
最近在IronScripter网站上发布了一个类似于这个问题的挑战,在那里你可以找到我的链接和其他一些解决方案。
赶时髦,发布另一个解决方案。这是一个通用的Java实现。输入:(int k)是要选择的元素数量,(List<T> List)是要选择的列表。返回一个组合列表(list < list <T>>)。
public static <T> List<List<T>> getCombinations(int k, List<T> list) {
List<List<T>> combinations = new ArrayList<List<T>>();
if (k == 0) {
combinations.add(new ArrayList<T>());
return combinations;
}
for (int i = 0; i < list.size(); i++) {
T element = list.get(i);
List<T> rest = getSublist(list, i+1);
for (List<T> previous : getCombinations(k-1, rest)) {
previous.add(element);
combinations.add(previous);
}
}
return combinations;
}
public static <T> List<T> getSublist(List<T> list, int i) {
List<T> sublist = new ArrayList<T>();
for (int j = i; j < list.size(); j++) {
sublist.add(list.get(j));
}
return sublist;
}
算法:
从1数到2^n。 将每个数字转换为二进制表示。 根据位置,将每个“on”位转换为集合中的元素。
在c#中:
void Main()
{
var set = new [] {"A", "B", "C", "D" }; //, "E", "F", "G", "H", "I", "J" };
var kElement = 2;
for(var i = 1; i < Math.Pow(2, set.Length); i++) {
var result = Convert.ToString(i, 2).PadLeft(set.Length, '0');
var cnt = Regex.Matches(Regex.Escape(result), "1").Count;
if (cnt == kElement) {
for(int j = 0; j < set.Length; j++)
if ( Char.GetNumericValue(result[j]) == 1)
Console.Write(set[j]);
Console.WriteLine();
}
}
}
为什么它能起作用?
在n元素集的子集和n位序列之间存在双射。
这意味着我们可以通过数数序列来计算出有多少个子集。
例如,下面的四个元素集可以用{0,1}X {0,1} X {0,1} X{0,1}(或2^4)个不同的序列表示。
我们要做的就是从1数到2^n来找到所有的组合。(我们忽略空集。)接下来,将数字转换为二进制表示。然后将集合中的元素替换为“on”位。
如果只需要k个元素的结果,则只在k位为“on”时打印。
(如果你想要所有的子集,而不是k长度的子集,删除cnt/kElement部分。)
(有关证明,请参阅麻省理工学院免费课件计算机科学数学,雷曼等,第11.2.2节。https://ocw.mit.edu/courses/electrical -工程-和-计算机- science/6 - 042 j -数学- -计算机科学-下降- 2010/readings/)