我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

下面的递归算法从有序集中选取所有k元素组合:

选择组合中的第一个元素I 将I与从大于I的元素集中递归选择的k-1个元素的组合组合。

对集合中的每一个i进行上述迭代。

为了避免重复,您必须选择比i大的其余元素。这样[3,5]将只被选中一次,即[3]与[5]结合,而不是两次(该条件消除了[5]+[3])。没有这个条件,你得到的是变化而不是组合。

其他回答

JavaScript,基于生成器,递归方法:

function *nCk(n,k){ for(var i=n-1;i>=k-1;--i) if(k===1) yield [i]; else for(var temp of nCk(i,k-1)){ temp.unshift(i); yield temp; } } function test(){ try{ var n=parseInt(ninp.value); var k=parseInt(kinp.value); log.innerText=""; var stop=Date.now()+1000; if(k>=1) for(var res of nCk(n,k)) if(Date.now()<stop) log.innerText+=JSON.stringify(res)+" "; else{ log.innerText+="1 second passed, stopping here."; break; } }catch(ex){} } n:<input id="ninp" oninput="test()"> &gt;= k:<input id="kinp" oninput="test()"> &gt;= 1 <div id="log"></div>

通过这种方式(减少i和unshift()),它以递减的顺序生成组合和组合内的元素,有点赏心悦目。 测试在1秒后停止,因此输入奇怪的数字是相对安全的。

c#简单算法。 (我发布它是因为我试图使用你们上传的那个,但由于某种原因我无法编译它——扩展一个类?所以我自己写了一个,以防别人遇到和我一样的问题)。 顺便说一下,除了基本的编程,我对c#没什么兴趣,但是这个工作得很好。

public static List<List<int>> GetSubsetsOfSizeK(List<int> lInputSet, int k)
        {
            List<List<int>> lSubsets = new List<List<int>>();
            GetSubsetsOfSizeK_rec(lInputSet, k, 0, new List<int>(), lSubsets);
            return lSubsets;
        }

public static void GetSubsetsOfSizeK_rec(List<int> lInputSet, int k, int i, List<int> lCurrSet, List<List<int>> lSubsets)
        {
            if (lCurrSet.Count == k)
            {
                lSubsets.Add(lCurrSet);
                return;
            }

            if (i >= lInputSet.Count)
                return;

            List<int> lWith = new List<int>(lCurrSet);
            List<int> lWithout = new List<int>(lCurrSet);
            lWith.Add(lInputSet[i++]);

            GetSubsetsOfSizeK_rec(lInputSet, k, i, lWith, lSubsets);
            GetSubsetsOfSizeK_rec(lInputSet, k, i, lWithout, lSubsets);
        }

GetSubsetsOfSizeK(set of type List<int>, integer k)

您可以修改它以遍历您正在处理的任何内容。

好运!

这个答案怎么样……这将打印所有长度为3的组合…它可以推广到任何长度… 工作代码…

#include<iostream>
#include<string>
using namespace std;

void combination(string a,string dest){
int l = dest.length();
if(a.empty() && l  == 3 ){
 cout<<dest<<endl;}
else{
  if(!a.empty() && dest.length() < 3 ){
     combination(a.substr(1,a.length()),dest+a[0]);}
  if(!a.empty() && dest.length() <= 3 ){
      combination(a.substr(1,a.length()),dest);}
 }

 }

 int main(){
 string demo("abcd");
 combination(demo,"");
 return 0;
 }

下面的递归算法从有序集中选取所有k元素组合:

选择组合中的第一个元素I 将I与从大于I的元素集中递归选择的k-1个元素的组合组合。

对集合中的每一个i进行上述迭代。

为了避免重复,您必须选择比i大的其余元素。这样[3,5]将只被选中一次,即[3]与[5]结合,而不是两次(该条件消除了[5]+[3])。没有这个条件,你得到的是变化而不是组合。

Array.prototype.combs = function(num) {

    var str = this,
        length = str.length,
        of = Math.pow(2, length) - 1,
        out, combinations = [];

    while(of) {

        out = [];

        for(var i = 0, y; i < length; i++) {

            y = (1 << i);

            if(y & of && (y !== of))
                out.push(str[i]);

        }

        if (out.length >= num) {
           combinations.push(out);
        }

        of--;
    }

    return combinations;
}