我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
当前回答
遵循Haskell代码同时计算组合数和组合,由于Haskell的惰性,您可以得到其中的一部分而无需计算另一部分。
import Data.Semigroup
import Data.Monoid
data Comb = MkComb {count :: Int, combinations :: [[Int]]} deriving (Show, Eq, Ord)
instance Semigroup Comb where
(MkComb c1 cs1) <> (MkComb c2 cs2) = MkComb (c1 + c2) (cs1 ++ cs2)
instance Monoid Comb where
mempty = MkComb 0 []
addElem :: Comb -> Int -> Comb
addElem (MkComb c cs) x = MkComb c (map (x :) cs)
comb :: Int -> Int -> Comb
comb n k | n < 0 || k < 0 = error "error in `comb n k`, n and k should be natural number"
comb n k | k == 0 || k == n = MkComb 1 [(take k [k-1,k-2..0])]
comb n k | n < k = mempty
comb n k = comb (n-1) k <> (comb (n-1) (k-1) `addElem` (n-1))
它是这样工作的:
*Main> comb 0 1
MkComb {count = 0, combinations = []}
*Main> comb 0 0
MkComb {count = 1, combinations = [[]]}
*Main> comb 1 1
MkComb {count = 1, combinations = [[0]]}
*Main> comb 4 2
MkComb {count = 6, combinations = [[1,0],[2,0],[2,1],[3,0],[3,1],[3,2]]}
*Main> count (comb 10 5)
252
其他回答
这是一个简单的JS解决方案:
function getAllCombinations(n, k, f1) { indexes = Array(k); for (let i =0; i< k; i++) { indexes[i] = i; } var total = 1; f1(indexes); while (indexes[0] !== n-k) { total++; getNext(n, indexes); f1(indexes); } return {total}; } function getNext(n, vec) { const k = vec.length; vec[k-1]++; for (var i=0; i<k; i++) { var currentIndex = k-i-1; if (vec[currentIndex] === n - i) { var nextIndex = k-i-2; vec[nextIndex]++; vec[currentIndex] = vec[nextIndex] + 1; } } for (var i=1; i<k; i++) { if (vec[i] === n - (k-i - 1)) { vec[i] = vec[i-1] + 1; } } return vec; } let start = new Date(); let result = getAllCombinations(10, 3, indexes => console.log(indexes)); let runTime = new Date() - start; console.log({ result, runTime });
这是我用c++写的命题
我尽可能少地限制迭代器类型,所以这个解决方案假设只有前向迭代器,它可以是const_iterator。这应该适用于任何标准容器。在参数没有意义的情况下,它抛出std:: invalid_argument
#include <vector>
#include <stdexcept>
template <typename Fci> // Fci - forward const iterator
std::vector<std::vector<Fci> >
enumerate_combinations(Fci begin, Fci end, unsigned int combination_size)
{
if(begin == end && combination_size > 0u)
throw std::invalid_argument("empty set and positive combination size!");
std::vector<std::vector<Fci> > result; // empty set of combinations
if(combination_size == 0u) return result; // there is exactly one combination of
// size 0 - emty set
std::vector<Fci> current_combination;
current_combination.reserve(combination_size + 1u); // I reserve one aditional slot
// in my vector to store
// the end sentinel there.
// The code is cleaner thanks to that
for(unsigned int i = 0u; i < combination_size && begin != end; ++i, ++begin)
{
current_combination.push_back(begin); // Construction of the first combination
}
// Since I assume the itarators support only incrementing, I have to iterate over
// the set to get its size, which is expensive. Here I had to itrate anyway to
// produce the first cobination, so I use the loop to also check the size.
if(current_combination.size() < combination_size)
throw std::invalid_argument("combination size > set size!");
result.push_back(current_combination); // Store the first combination in the results set
current_combination.push_back(end); // Here I add mentioned earlier sentinel to
// simplyfy rest of the code. If I did it
// earlier, previous statement would get ugly.
while(true)
{
unsigned int i = combination_size;
Fci tmp; // Thanks to the sentinel I can find first
do // iterator to change, simply by scaning
{ // from right to left and looking for the
tmp = current_combination[--i]; // first "bubble". The fact, that it's
++tmp; // a forward iterator makes it ugly but I
} // can't help it.
while(i > 0u && tmp == current_combination[i + 1u]);
// Here is probably my most obfuscated expression.
// Loop above looks for a "bubble". If there is no "bubble", that means, that
// current_combination is the last combination, Expression in the if statement
// below evaluates to true and the function exits returning result.
// If the "bubble" is found however, the ststement below has a sideeffect of
// incrementing the first iterator to the left of the "bubble".
if(++current_combination[i] == current_combination[i + 1u])
return result;
// Rest of the code sets posiotons of the rest of the iterstors
// (if there are any), that are to the right of the incremented one,
// to form next combination
while(++i < combination_size)
{
current_combination[i] = current_combination[i - 1u];
++current_combination[i];
}
// Below is the ugly side of using the sentinel. Well it had to haave some
// disadvantage. Try without it.
result.push_back(std::vector<Fci>(current_combination.begin(),
current_combination.end() - 1));
}
}
《计算机编程艺术,卷4A:组合算法,第1部分》第7.2.1.3节中算法L(字典组合)的C代码:
#include <stdio.h>
#include <stdlib.h>
void visit(int* c, int t)
{
// for (int j = 1; j <= t; j++)
for (int j = t; j > 0; j--)
printf("%d ", c[j]);
printf("\n");
}
int* initialize(int n, int t)
{
// c[0] not used
int *c = (int*) malloc((t + 3) * sizeof(int));
for (int j = 1; j <= t; j++)
c[j] = j - 1;
c[t+1] = n;
c[t+2] = 0;
return c;
}
void comb(int n, int t)
{
int *c = initialize(n, t);
int j;
for (;;) {
visit(c, t);
j = 1;
while (c[j]+1 == c[j+1]) {
c[j] = j - 1;
++j;
}
if (j > t)
return;
++c[j];
}
free(c);
}
int main(int argc, char *argv[])
{
comb(5, 3);
return 0;
}
一个简洁的Javascript解决方案:
Array.prototype.combine=function combine(k){
var toCombine=this;
var last;
function combi(n,comb){
var combs=[];
for ( var x=0,y=comb.length;x<y;x++){
for ( var l=0,m=toCombine.length;l<m;l++){
combs.push(comb[x]+toCombine[l]);
}
}
if (n<k-1){
n++;
combi(n,combs);
} else{last=combs;}
}
combi(1,toCombine);
return last;
}
// Example:
// var toCombine=['a','b','c'];
// var results=toCombine.combine(4);
Array.prototype.combs = function(num) {
var str = this,
length = str.length,
of = Math.pow(2, length) - 1,
out, combinations = [];
while(of) {
out = [];
for(var i = 0, y; i < length; i++) {
y = (1 << i);
if(y & of && (y !== of))
out.push(str[i]);
}
if (out.length >= num) {
combinations.push(out);
}
of--;
}
return combinations;
}