我想设计一个程序,可以帮助我在5种预定义的颜色中评估哪一种更类似于可变颜色,以及与可变颜色的百分比。问题是我不知道如何手动一步一步地做到这一点。所以想一个程序就更难了。

更多细节:颜色来自不同颜色的管子和凝胶的照片。我有5个不同颜色的管子,每个代表5个等级中的1个。我想拍摄其他样本的照片,然后在电脑上通过比较颜色来评估样本属于哪个级别,我也想知道一个近似的百分比。我想要一个这样做的程序:http://www.colortools.net/color_matcher.html

如果你能告诉我该采取什么步骤,即使它们需要我手动思考和执行。那会很有帮助的。


如果你有两个颜色对象c1和c2,你可以比较c1和c2的每个RGB值。

int diffRed   = Math.abs(c1.getRed()   - c2.getRed());
int diffGreen = Math.abs(c1.getGreen() - c2.getGreen());
int diffBlue  = Math.abs(c1.getBlue()  - c2.getBlue());

你可以将这些值除以饱和度的差异(255),你就会得到两者之间的差异。

float pctDiffRed   = (float)diffRed   / 255;
float pctDiffGreen = (float)diffGreen / 255;
float pctDiffBlue   = (float)diffBlue  / 255;

之后你就可以找到平均色差的百分比。

(pctDiffRed + pctDiffGreen + pctDiffBlue) / 3 * 100

这就得到了c和c之间的百分比差。


这只是我第一次想到的一个想法(如果愚蠢的话,对不起)。 颜色的三个分量可以假定为点的三维坐标,然后可以计算点之间的距离。

外汇期货

Point1 has R1 G1 B1
Point2 has R2 G2 B2

颜色之间的距离为

d=sqrt((r2-r1)^2+(g2-g1)^2+(b2-b1)^2)

比例是

p=d/sqrt((255)^2+(255)^2+(255)^2)

颜色值有不止一个维度,所以没有内在的方法来比较两种颜色。您必须为您的用例确定颜色的含义,从而确定如何最好地比较它们。

很可能你想比较颜色的色相、饱和度和/或明度属性,而不是红/绿/蓝组件。如果你不知道如何比较它们,那就拿几对样品颜色,在心里比较一下,然后试着向自己证明/解释为什么它们相似/不同。

一旦你知道了你想要比较的颜色的哪些属性/成分,那么你就需要弄清楚如何从颜色中提取这些信息。

最有可能的是,你只需要将颜色从常见的RedGreenBlue表示转换为HueSaturationLightness,然后计算类似的东西

avghue = (color1.hue + color2.hue)/2
distance = abs(color1.hue-avghue)

这个例子会给你一个简单的标量值,指示颜色的渐变/色相彼此之间的距离。

参见维基百科上的HSL和HSV。


我猜你最后想分析一幅完整的图像,对吧?所以你可以检查单位颜色矩阵的最小/最大差值。

大多数处理图形的数学操作都使用矩阵,因为使用矩阵的可能算法通常比经典的逐点距离和比较计算更快。(例如,对于使用DirectX, OpenGL,…的操作)

所以我认为你应该从这里开始:

http://en.wikipedia.org/wiki/Identity_matrix

http://en.wikipedia.org/wiki/Matrix_difference_equation

…正如Beska在上面评论的那样:

这可能不会带来最好的“可见”差异……

这也意味着,如果你在处理图像,你的算法取决于你对“相似”的定义。


只是另一个答案,尽管它与Supr的答案相似-只是不同的颜色空间。

问题是:人类感知颜色的差异并不均匀,而RGB颜色空间忽略了这一点。因此,如果你使用RGB颜色空间,只是计算两种颜色之间的欧几里得距离,你可能会得到一个在数学上绝对正确的差异,但与人类告诉你的不一致。

This may not be a problem - the difference is not that large I think, but if you want to solve this "better" you should convert your RGB colors into a color space that was specifically designed to avoid the above problem. There are several ones, improvements from earlier models (since this is based on human perception we need to measure the "correct" values based on experimental data). There's the Lab colorspace which I think would be the best although a bit complicated to convert it to. Simpler would be the CIE XYZ one.

这里有一个网站列出了在不同颜色空间之间转换的公式,所以你可以尝试一下。


请参阅维基百科关于色差的文章以获得正确的线索。 基本上,你想要在多维颜色空间中计算一个距离度量。

但是RGB并不是“感知上一致的”,所以Vadim建议的欧几里得RGB距离度量将与人类感知的颜色之间的距离不匹配。首先,L*a*b*是一个感知上均匀的颜色空间,delta度量是常用的。但有更精致的色彩空间和更精致的delta公式,更接近人类的感知。

你需要学习更多关于颜色空间和光源的知识来进行转换。但如果想要一个比欧几里得RGB度量更好的快速公式,只需这样做:

假设你的RGB值在sRGB颜色空间中 找到sRGB到L*a*b*的转换公式 将sRGB颜色转换为L*a*b* 计算两个L*a*b*值之间的delta

计算成本不高,只是一些非线性公式和一些乘法和加法。


Actually I walked the same path a couple of months ago. There is no perfect answer to the question (that was asked here a couple of times) but there is one, more sophisticated than the sqrt(r-r) etc. answer and more easy to implement directly with RGB without moving to all kinds of alternate color spaces. I found this formula here which is a low cost approximation of the quite complicated real formula (by the CIE which is the W3C of colors, since this is a not finished quest, you can find older and simpler color difference equations there). Good Luck.

编辑:为了子孙后代,这里是相关的C代码:

typedef struct {
     unsigned char r, g, b;
} RGB;

double ColourDistance(RGB e1, RGB e2)
{
    long rmean = ( (long)e1.r + (long)e2.r ) / 2;
    long r = (long)e1.r - (long)e2.r;
    long g = (long)e1.g - (long)e2.g;
    long b = (long)e1.b - (long)e2.b;
    return sqrt((((512+rmean)*r*r)>>8) + 4*g*g + (((767-rmean)*b*b)>>8));
}

您需要将任何RGB颜色转换为Lab颜色空间,以便能够以人类看到它们的方式进行比较。否则你会得到RGB颜色“匹配”在一些非常奇怪的方式。

关于颜色差异的维基百科链接向您介绍了多年来定义的各种Lab颜色空间差异算法。最简单的方法是检查两种实验室颜色的欧几里得距离,可以工作,但有一些缺陷。

在OpenIMAJ项目中有一个更复杂的CIEDE2000算法的Java实现。提供你的两组Lab颜色,它会给你一个距离值。


The best way is deltaE. DeltaE is a number that shows the difference of the colors. If deltae < 1 then the difference can't recognize by human eyes. I wrote a code in canvas and js for converting rgb to lab and then calculating delta e. On this example the code is recognising pixels which have different color with a base color that I saved as LAB1. and then if it is different makes those pixels red. You can increase or reduce the sensitivity of the color difference with increae or decrease the acceptable range of delta e. In this example I assigned 10 for deltaE in the line that I wrote (deltae <= 10):

<script>   
  var constants = {
    canvasWidth: 700, // In pixels.
    canvasHeight: 600, // In pixels.
    colorMap: new Array() 
          };



  // -----------------------------------------------------------------------------------------------------

  function fillcolormap(imageObj1) {


    function rgbtoxyz(red1,green1,blue1){ // a converter for converting rgb model to xyz model
 var red2 = red1/255;
 var green2 = green1/255;
 var blue2 = blue1/255;
 if(red2>0.04045){
      red2 = (red2+0.055)/1.055;
      red2 = Math.pow(red2,2.4);
 }
 else{
      red2 = red2/12.92;
 }
 if(green2>0.04045){
      green2 = (green2+0.055)/1.055;
      green2 = Math.pow(green2,2.4);    
 }
 else{
      green2 = green2/12.92;
 }
 if(blue2>0.04045){
      blue2 = (blue2+0.055)/1.055;
      blue2 = Math.pow(blue2,2.4);    
 }
 else{
      blue2 = blue2/12.92;
 }
 red2 = (red2*100);
 green2 = (green2*100);
 blue2 = (blue2*100);
 var x = (red2 * 0.4124) + (green2 * 0.3576) + (blue2 * 0.1805);
 var y = (red2 * 0.2126) + (green2 * 0.7152) + (blue2 * 0.0722);
 var z = (red2 * 0.0193) + (green2 * 0.1192) + (blue2 * 0.9505);
 var xyzresult = new Array();
 xyzresult[0] = x;
 xyzresult[1] = y;
 xyzresult[2] = z;
 return(xyzresult);
} //end of rgb_to_xyz function
function xyztolab(xyz){ //a convertor from xyz to lab model
 var x = xyz[0];
 var y = xyz[1];
 var z = xyz[2];
 var x2 = x/95.047;
 var y2 = y/100;
 var z2 = z/108.883;
 if(x2>0.008856){
      x2 = Math.pow(x2,1/3);
 }
 else{
      x2 = (7.787*x2) + (16/116);
 }
 if(y2>0.008856){
      y2 = Math.pow(y2,1/3);
 }
 else{
      y2 = (7.787*y2) + (16/116);
 }
 if(z2>0.008856){
      z2 = Math.pow(z2,1/3);
 }
 else{
      z2 = (7.787*z2) + (16/116);
 }
 var l= 116*y2 - 16;
 var a= 500*(x2-y2);
 var b= 200*(y2-z2);
 var labresult = new Array();
 labresult[0] = l;
 labresult[1] = a;
 labresult[2] = b;
 return(labresult);

}

    var canvas = document.getElementById('myCanvas');
    var context = canvas.getContext('2d');
    var imageX = 0;
    var imageY = 0;

    context.drawImage(imageObj1, imageX, imageY, 240, 140);
    var imageData = context.getImageData(0, 0, 240, 140);
    var data = imageData.data;
    var n = data.length;
   // iterate over all pixels

    var m = 0;
    for (var i = 0; i < n; i += 4) {
      var red = data[i];
      var green = data[i + 1];
      var blue = data[i + 2];
    var xyzcolor = new Array();
    xyzcolor = rgbtoxyz(red,green,blue);
    var lab = new Array();
    lab = xyztolab(xyzcolor);
    constants.colorMap.push(lab); //fill up the colormap array with lab colors.         
      } 

  }

// -----------------------------------------------------------------------------------------------------

    function colorize(pixqty) {

         function deltae94(lab1,lab2){    //calculating Delta E 1994

         var c1 = Math.sqrt((lab1[1]*lab1[1])+(lab1[2]*lab1[2]));
         var c2 =  Math.sqrt((lab2[1]*lab2[1])+(lab2[2]*lab2[2]));
         var dc = c1-c2;
         var dl = lab1[0]-lab2[0];
         var da = lab1[1]-lab2[1];
         var db = lab1[2]-lab2[2];
         var dh = Math.sqrt((da*da)+(db*db)-(dc*dc));
         var first = dl;
         var second = dc/(1+(0.045*c1));
         var third = dh/(1+(0.015*c1));
         var deresult = Math.sqrt((first*first)+(second*second)+(third*third));
         return(deresult);
          } // end of deltae94 function
    var lab11 =  new Array("80","-4","21");
    var lab12 = new Array();
    var k2=0;
    var canvas = document.getElementById('myCanvas');
                                        var context = canvas.getContext('2d');
                                        var imageData = context.getImageData(0, 0, 240, 140);
                                        var data = imageData.data;

    for (var i=0; i<pixqty; i++) {

    lab12 = constants.colorMap[i];

    var deltae = deltae94(lab11,lab12);     
                                        if (deltae <= 10) {

                                        data[i*4] = 255;
                                        data[(i*4)+1] = 0;
                                        data[(i*4)+2] = 0;  
                                        k2++;
                                        } // end of if 
                                } //end of for loop
    context.clearRect(0,0,240,140);
    alert(k2);
    context.putImageData(imageData,0,0);
} 
// -----------------------------------------------------------------------------------------------------

$(window).load(function () {    
  var imageObj = new Image();
  imageObj.onload = function() {
  fillcolormap(imageObj);    
  }
  imageObj.src = './mixcolor.png';
});

// ---------------------------------------------------------------------------------------------------
 var pixno2 = 240*140; 
 </script>

通过人类感知来比较两种颜色的最佳方法之一是CIE76。这个差值叫做e。当小于1时,人眼无法识别差异。

有一个很棒的颜色工具类ColorUtils(代码如下),它包括CIE76比较方法。作者是苏黎世大学的丹尼尔·斯特雷贝尔。

从ColorUtils.class我使用的方法:

static double colorDifference(int r1, int g1, int b1, int r2, int g2, int b2)

r1,g1,b1 -第一种颜色的RGB值

r2,g2,b2 -您想比较的第二个颜色的RGB值

如果你使用Android,你可以得到这样的值:

r1 = Color.red(像素);

g1 = Color.green(像素);

b1 = Color.blue(像素);


ColorUtils.class作者:Daniel Strebel,苏黎世大学:

import android.graphics.Color;

public class ColorUtil {
public static int argb(int R, int G, int B) {
    return argb(Byte.MAX_VALUE, R, G, B);
}

public static int argb(int A, int R, int G, int B) {
    byte[] colorByteArr = {(byte) A, (byte) R, (byte) G, (byte) B};
    return byteArrToInt(colorByteArr);
}

public static int[] rgb(int argb) {
    return new int[]{(argb >> 16) & 0xFF, (argb >> 8) & 0xFF, argb & 0xFF};
}

public static int byteArrToInt(byte[] colorByteArr) {
    return (colorByteArr[0] << 24) + ((colorByteArr[1] & 0xFF) << 16)
            + ((colorByteArr[2] & 0xFF) << 8) + (colorByteArr[3] & 0xFF);
}

public static int[] rgb2lab(int R, int G, int B) {
    //http://www.brucelindbloom.com

    float r, g, b, X, Y, Z, fx, fy, fz, xr, yr, zr;
    float Ls, as, bs;
    float eps = 216.f / 24389.f;
    float k = 24389.f / 27.f;

    float Xr = 0.964221f;  // reference white D50
    float Yr = 1.0f;
    float Zr = 0.825211f;

    // RGB to XYZ
    r = R / 255.f; //R 0..1
    g = G / 255.f; //G 0..1
    b = B / 255.f; //B 0..1

    // assuming sRGB (D65)
    if (r <= 0.04045)
        r = r / 12;
    else
        r = (float) Math.pow((r + 0.055) / 1.055, 2.4);

    if (g <= 0.04045)
        g = g / 12;
    else
        g = (float) Math.pow((g + 0.055) / 1.055, 2.4);

    if (b <= 0.04045)
        b = b / 12;
    else
        b = (float) Math.pow((b + 0.055) / 1.055, 2.4);


    X = 0.436052025f * r + 0.385081593f * g + 0.143087414f * b;
    Y = 0.222491598f * r + 0.71688606f * g + 0.060621486f * b;
    Z = 0.013929122f * r + 0.097097002f * g + 0.71418547f * b;

    // XYZ to Lab
    xr = X / Xr;
    yr = Y / Yr;
    zr = Z / Zr;

    if (xr > eps)
        fx = (float) Math.pow(xr, 1 / 3.);
    else
        fx = (float) ((k * xr + 16.) / 116.);

    if (yr > eps)
        fy = (float) Math.pow(yr, 1 / 3.);
    else
        fy = (float) ((k * yr + 16.) / 116.);

    if (zr > eps)
        fz = (float) Math.pow(zr, 1 / 3.);
    else
        fz = (float) ((k * zr + 16.) / 116);

    Ls = (116 * fy) - 16;
    as = 500 * (fx - fy);
    bs = 200 * (fy - fz);

    int[] lab = new int[3];
    lab[0] = (int) (2.55 * Ls + .5);
    lab[1] = (int) (as + .5);
    lab[2] = (int) (bs + .5);
    return lab;
}

/**
 * Computes the difference between two RGB colors by converting them to the L*a*b scale and
 * comparing them using the CIE76 algorithm { http://en.wikipedia.org/wiki/Color_difference#CIE76}
 */
public static double getColorDifference(int a, int b) {
    int r1, g1, b1, r2, g2, b2;
    r1 = Color.red(a);
    g1 = Color.green(a);
    b1 = Color.blue(a);
    r2 = Color.red(b);
    g2 = Color.green(b);
    b2 = Color.blue(b);
    int[] lab1 = rgb2lab(r1, g1, b1);
    int[] lab2 = rgb2lab(r2, g2, b2);
    return Math.sqrt(Math.pow(lab2[0] - lab1[0], 2) + Math.pow(lab2[1] - lab1[1], 2) + Math.pow(lab2[2] - lab1[2], 2));
}
}

比较颜色的唯一“正确”方法是在CIELab或CIELuv中使用delta。

但对于很多应用,我认为这是一个足够好的近似:

子弹会= 3 * | diana | + 4个数2 + 3 * * |人物dG |专题| dB专题|

我认为在比较颜色时,加权曼哈顿距离更有意义。记住,颜色原色只存在于我们的大脑中。它们没有任何物理意义。CIELab和CIELuv是根据我们对颜色的感知建立的统计模型。


以下所有方法的结果都是0-100。

internal static class ColorDifference
{
    internal enum Method
    {
        Binary, // true or false, 0 is false
        Square,
        Dimensional,
        CIE76
    }

    public static double Calculate(Method method, int argb1, int argb2)
    {
        int[] c1 = ColorConversion.ArgbToArray(argb1);
        int[] c2 = ColorConversion.ArgbToArray(argb2);
        return Calculate(method, c1[1], c2[1], c1[2], c2[2], c1[3], c2[3], c1[0], c2[0]);
    }

    public static double Calculate(Method method, int r1, int r2, int g1, int g2, int b1, int b2, int a1 = -1, int a2 = -1)
    {
        switch (method)
        {
            case Method.Binary:
                return (r1 == r2 && g1 == g2 && b1 == b2 && a1 == a2) ? 0 : 100;
            case Method.CIE76:
                return CalculateCIE76(r1, r2, g1, g2, b1, b2);
            case Method.Dimensional:
                if (a1 == -1 || a2 == -1) return Calculate3D(r1, r2, g1, g2, b1, b2);
                else return Calculate4D(r1, r2, g1, g2, b1, b2, a1, a2);
            case Method.Square:
                return CalculateSquare(r1, r2, g1, g2, b1, b2, a1, a2);
            default:
                throw new InvalidOperationException();
        }
    }

    public static double Calculate(Method method, Color c1, Color c2, bool alpha)
    {
        switch (method)
        {
            case Method.Binary:
                return (c1.R == c2.R && c1.G == c2.G && c1.B == c2.B && (!alpha || c1.A == c2.A)) ? 0 : 100;
            case Method.CIE76:
                if (alpha) throw new InvalidOperationException();
                return CalculateCIE76(c1, c2);
            case Method.Dimensional:
                if (alpha) return Calculate4D(c1, c2);
                else return Calculate3D(c1, c2);
            case Method.Square:
                if (alpha) return CalculateSquareAlpha(c1, c2);
                else return CalculateSquare(c1, c2);
            default:
                throw new InvalidOperationException();
        }
    }

    // A simple idea, based on on a Square
    public static double CalculateSquare(int argb1, int argb2)
    {
        int[] c1 = ColorConversion.ArgbToArray(argb1);
        int[] c2 = ColorConversion.ArgbToArray(argb2);
        return CalculateSquare(c1[1], c2[1], c1[2], c2[2], c1[3], c2[3]);
    }

    public static double CalculateSquare(Color c1, Color c2)
    {
        return CalculateSquare(c1.R, c2.R, c1.G, c2.G, c1.B, c2.B);
    }

    public static double CalculateSquareAlpha(int argb1, int argb2)
    {
        int[] c1 = ColorConversion.ArgbToArray(argb1);
        int[] c2 = ColorConversion.ArgbToArray(argb2);
        return CalculateSquare(c1[1], c2[1], c1[2], c2[2], c1[3], c2[3], c1[0], c2[0]);
    }

    public static double CalculateSquareAlpha(Color c1, Color c2)
    {
        return CalculateSquare(c1.R, c2.R, c1.G, c2.G, c1.B, c2.B, c1.A, c2.A);
    }

    public static double CalculateSquare(int r1, int r2, int g1, int g2, int b1, int b2, int a1 = -1, int a2 = -1)
    {
        if (a1 == -1 || a2 == -1) return (Math.Abs(r1 - r2) + Math.Abs(g1 - g2) + Math.Abs(b1 - b2)) / 7.65;
        else return (Math.Abs(r1 - r2) + Math.Abs(g1 - g2) + Math.Abs(b1 - b2) + Math.Abs(a1 - a2)) / 10.2;
    }

    // from:http://stackoverflow.com/questions/9018016/how-to-compare-two-colors
    public static double Calculate3D(int argb1, int argb2)
    {
        int[] c1 = ColorConversion.ArgbToArray(argb1);
        int[] c2 = ColorConversion.ArgbToArray(argb2);
        return Calculate3D(c1[1], c2[1], c1[2], c2[2], c1[3], c2[3]);
    }

    public static double Calculate3D(Color c1, Color c2)
    {
        return Calculate3D(c1.R, c2.R, c1.G, c2.G, c1.B, c2.B);
    }

    public static double Calculate3D(int r1, int r2, int g1, int g2, int b1, int b2)
    {
        return Math.Sqrt(Math.Pow(Math.Abs(r1 - r2), 2) + Math.Pow(Math.Abs(g1 - g2), 2) + Math.Pow(Math.Abs(b1 - b2), 2)) / 4.41672955930063709849498817084;
    }

    // Same as above, but made 4D to include alpha channel
    public static double Calculate4D(int argb1, int argb2)
    {
        int[] c1 = ColorConversion.ArgbToArray(argb1);
        int[] c2 = ColorConversion.ArgbToArray(argb2);
        return Calculate4D(c1[1], c2[1], c1[2], c2[2], c1[3], c2[3], c1[0], c2[0]);
    }

    public static double Calculate4D(Color c1, Color c2)
    {
        return Calculate4D(c1.R, c2.R, c1.G, c2.G, c1.B, c2.B, c1.A, c2.A);
    }

    public static double Calculate4D(int r1, int r2, int g1, int g2, int b1, int b2, int a1, int a2)
    {
        return Math.Sqrt(Math.Pow(Math.Abs(r1 - r2), 2) + Math.Pow(Math.Abs(g1 - g2), 2) + Math.Pow(Math.Abs(b1 - b2), 2) + Math.Pow(Math.Abs(a1 - a2), 2)) / 5.1;
    }

    /**
    * Computes the difference between two RGB colors by converting them to the L*a*b scale and
    * comparing them using the CIE76 algorithm { http://en.wikipedia.org/wiki/Color_difference#CIE76}
    */
    public static double CalculateCIE76(int argb1, int argb2)
    {
        return CalculateCIE76(Color.FromArgb(argb1), Color.FromArgb(argb2));
    }

    public static double CalculateCIE76(Color c1, Color c2)
    {
        return CalculateCIE76(c1.R, c2.R, c1.G, c2.G, c1.B, c2.B);
    }

    public static double CalculateCIE76(int r1, int r2, int g1, int g2, int b1, int b2)
    {
        int[] lab1 = ColorConversion.ColorToLab(r1, g1, b1);
        int[] lab2 = ColorConversion.ColorToLab(r2, g2, b2);
        return Math.Sqrt(Math.Pow(lab2[0] - lab1[0], 2) + Math.Pow(lab2[1] - lab1[1], 2) + Math.Pow(lab2[2] - lab1[2], 2)) / 2.55;
    }
}


internal static class ColorConversion
{

    public static int[] ArgbToArray(int argb)
    {
        return new int[] { (argb >> 24), (argb >> 16) & 0xFF, (argb >> 8) & 0xFF, argb & 0xFF };
    }

    public static int[] ColorToLab(int R, int G, int B)
    {
        // http://www.brucelindbloom.com

        double r, g, b, X, Y, Z, fx, fy, fz, xr, yr, zr;
        double Ls, fas, fbs;
        double eps = 216.0f / 24389.0f;
        double k = 24389.0f / 27.0f;

        double Xr = 0.964221f;  // reference white D50
        double Yr = 1.0f;
        double Zr = 0.825211f;

        // RGB to XYZ
        r = R / 255.0f; //R 0..1
        g = G / 255.0f; //G 0..1
        b = B / 255.0f; //B 0..1

        // assuming sRGB (D65)
        if (r <= 0.04045) r = r / 12;
        else r = (float)Math.Pow((r + 0.055) / 1.055, 2.4);

        if (g <= 0.04045) g = g / 12;
        else g = (float)Math.Pow((g + 0.055) / 1.055, 2.4);

        if (b <= 0.04045) b = b / 12;
        else b = (float)Math.Pow((b + 0.055) / 1.055, 2.4);

        X = 0.436052025f * r + 0.385081593f * g + 0.143087414f * b;
        Y = 0.222491598f * r + 0.71688606f * g + 0.060621486f * b;
        Z = 0.013929122f * r + 0.097097002f * g + 0.71418547f * b;

        // XYZ to Lab
        xr = X / Xr;
        yr = Y / Yr;
        zr = Z / Zr;

        if (xr > eps) fx = (float)Math.Pow(xr, 1 / 3.0);
        else fx = (float)((k * xr + 16.0) / 116.0);

        if (yr > eps) fy = (float)Math.Pow(yr, 1 / 3.0);
        else fy = (float)((k * yr + 16.0) / 116.0);

        if (zr > eps) fz = (float)Math.Pow(zr, 1 / 3.0);
        else fz = (float)((k * zr + 16.0) / 116);

        Ls = (116 * fy) - 16;
        fas = 500 * (fx - fy);
        fbs = 200 * (fy - fz);

        int[] lab = new int[3];
        lab[0] = (int)(2.55 * Ls + 0.5);
        lab[1] = (int)(fas + 0.5);
        lab[2] = (int)(fbs + 0.5);
        return lab;
    }
}

一个只使用RGB的简单方法是

cR=R1-R2 
cG=G1-G2 
cB=B1-B2 
uR=R1+R2 
distance=cR*cR*(2+uR/256) + cG*cG*4 + cB*cB*(2+(255-uR)/256)

我已经使用这个工具有一段时间了,它可以很好地用于大多数目的。


对于快速和肮脏,你可以做到

import java.awt.Color;
private Color dropPrecision(Color c,int threshold){
    return new Color((c.getRed()/threshold),
                     (c.getGreen()/threshold),
                     (c.getBlue()/threshold));
}
public boolean inThreshold(Color _1,Color _2,int threshold){
    return dropPrecision(_1,threshold)==dropPrecision(_2,threshold);
}

利用整数除法对颜色进行量化。


我在我的android up中使用了这个,它似乎令人满意,尽管不建议使用RGB空间:

    public double colourDistance(int red1,int green1, int blue1, int red2, int green2, int blue2)
{
      double rmean = ( red1 + red2 )/2;
    int r = red1 - red2;
    int g = green1 - green2;
    int b = blue1 - blue2;
    double weightR = 2 + rmean/256;
    double weightG = 4.0;
    double weightB = 2 + (255-rmean)/256;
    return Math.sqrt(weightR*r*r + weightG*g*g + weightB*b*b);
}

然后我用下面的方法得到相似度的百分比:

double maxColDist = 764.8339663572415;
double d1 = colourDistance(red1,green1,blue1,red2,green2,blue2);
String s1 = (int) Math.round(((maxColDist-d1)/maxColDist)*100) + "% match";

它工作得很好。


我尝试了各种方法,如LAB颜色空间,HSV比较,我发现光度在这个目的上非常有效。

这是Python版本

def lum(c):
    def factor(component):
        component = component / 255;
        if (component <= 0.03928):
            component = component / 12.92;
        else:
            component = math.pow(((component + 0.055) / 1.055), 2.4);

        return component
    components = [factor(ci) for ci in c]

    return (components[0] * 0.2126 + components[1] * 0.7152 + components[2] * 0.0722) + 0.05;

def color_distance(c1, c2):

    l1 = lum(c1)
    l2 = lum(c2)
    higher = max(l1, l2)
    lower = min(l1, l2)

    return (higher - lower) / higher


c1 = ImageColor.getrgb('white')
c2 = ImageColor.getrgb('yellow')
print(color_distance(c1, c2))

会给你

0.0687619047619048

Kotlin版本与你想匹配的百分比有多少。

方法调用,参数为percent

isMatchingColor(intColor1, intColor2, 95) // should match color if 95% similar

方法体

private fun isMatchingColor(intColor1: Int, intColor2: Int, percent: Int = 90): Boolean {
    val threadSold = 255 - (255 / 100f * percent)

    val diffAlpha = abs(Color.alpha(intColor1) - Color.alpha(intColor2))
    val diffRed = abs(Color.red(intColor1) - Color.red(intColor2))
    val diffGreen = abs(Color.green(intColor1) - Color.green(intColor2))
    val diffBlue = abs(Color.blue(intColor1) - Color.blue(intColor2))

    if (diffAlpha > threadSold) {
        return false
    }

    if (diffRed > threadSold) {
        return false
    }

    if (diffGreen > threadSold) {
        return false
    }

    if (diffBlue > threadSold) {
        return false
    }

    return true
}

快速回答

我找到这个帖子是因为我需要这个问题的Swift版本。由于还没有人给出答案,我的答案是:

extension UIColor {

    var rgba: (red: CGFloat, green: CGFloat, blue: CGFloat, alpha: CGFloat) {
        var red: CGFloat = 0
        var green: CGFloat = 0
        var blue: CGFloat = 0
        var alpha: CGFloat = 0
        getRed(&red, green: &green, blue: &blue, alpha: &alpha)

        return (red, green, blue, alpha)
    }

    func isSimilar(to colorB: UIColor) -> Bool {
        let rgbA = self.rgba
        let rgbB = colorB.rgba

        let diffRed = abs(CGFloat(rgbA.red) - CGFloat(rgbB.red))
        let diffGreen = abs(rgbA.green - rgbB.green)
        let diffBlue = abs(rgbA.blue - rgbB.blue)

        let pctRed = diffRed
        let pctGreen = diffGreen
        let pctBlue = diffBlue

        let pct = (pctRed + pctGreen + pctBlue) / 3 * 100

        return pct < 10 ? true : false
    }
}

用法:

let black: UIColor = UIColor.black
let white: UIColor = UIColor.white

let similar: Bool = black.isSimilar(to: white)

我设置小于10%的差异返回相似的颜色,但你可以自定义这自己。


Android for ColorUtils API RGBToHSL 我有两个int argb颜色(color1, color2),我想要得到两种颜色之间的距离/差异。这是我所做的;

private float getHue(int color) {
    int R = (color >> 16) & 0xff;
    int G = (color >>  8) & 0xff;
    int B = (color      ) & 0xff;
    float[] colorHue = new float[3];
    ColorUtils.RGBToHSL(R, G, B, colorHue);
    return colorHue[0];
}

然后我使用下面的代码来查找两种颜色之间的距离。

private float getDistance(getHue(color1), getHue(color2)) {
    float avgHue = (hue1 + hue2)/2;
    return Math.abs(hue1 - avgHue);
}