我想设计一个程序,可以帮助我在5种预定义的颜色中评估哪一种更类似于可变颜色,以及与可变颜色的百分比。问题是我不知道如何手动一步一步地做到这一点。所以想一个程序就更难了。
更多细节:颜色来自不同颜色的管子和凝胶的照片。我有5个不同颜色的管子,每个代表5个等级中的1个。我想拍摄其他样本的照片,然后在电脑上通过比较颜色来评估样本属于哪个级别,我也想知道一个近似的百分比。我想要一个这样做的程序:http://www.colortools.net/color_matcher.html
如果你能告诉我该采取什么步骤,即使它们需要我手动思考和执行。那会很有帮助的。
我尝试了各种方法,如LAB颜色空间,HSV比较,我发现光度在这个目的上非常有效。
这是Python版本
def lum(c):
def factor(component):
component = component / 255;
if (component <= 0.03928):
component = component / 12.92;
else:
component = math.pow(((component + 0.055) / 1.055), 2.4);
return component
components = [factor(ci) for ci in c]
return (components[0] * 0.2126 + components[1] * 0.7152 + components[2] * 0.0722) + 0.05;
def color_distance(c1, c2):
l1 = lum(c1)
l2 = lum(c2)
higher = max(l1, l2)
lower = min(l1, l2)
return (higher - lower) / higher
c1 = ImageColor.getrgb('white')
c2 = ImageColor.getrgb('yellow')
print(color_distance(c1, c2))
会给你
0.0687619047619048
Actually I walked the same path a couple of months ago. There is no perfect answer to the question (that was asked here a couple of times) but there is one, more sophisticated than the sqrt(r-r) etc. answer and more easy to implement directly with RGB without moving to all kinds of alternate color spaces. I found this formula here which is a low cost approximation of the quite complicated real formula (by the CIE which is the W3C of colors, since this is a not finished quest, you can find older and simpler color difference equations there).
Good Luck.
编辑:为了子孙后代,这里是相关的C代码:
typedef struct {
unsigned char r, g, b;
} RGB;
double ColourDistance(RGB e1, RGB e2)
{
long rmean = ( (long)e1.r + (long)e2.r ) / 2;
long r = (long)e1.r - (long)e2.r;
long g = (long)e1.g - (long)e2.g;
long b = (long)e1.b - (long)e2.b;
return sqrt((((512+rmean)*r*r)>>8) + 4*g*g + (((767-rmean)*b*b)>>8));
}
我猜你最后想分析一幅完整的图像,对吧?所以你可以检查单位颜色矩阵的最小/最大差值。
大多数处理图形的数学操作都使用矩阵,因为使用矩阵的可能算法通常比经典的逐点距离和比较计算更快。(例如,对于使用DirectX, OpenGL,…的操作)
所以我认为你应该从这里开始:
http://en.wikipedia.org/wiki/Identity_matrix
http://en.wikipedia.org/wiki/Matrix_difference_equation
…正如Beska在上面评论的那样:
这可能不会带来最好的“可见”差异……
这也意味着,如果你在处理图像,你的算法取决于你对“相似”的定义。
我在我的android up中使用了这个,它似乎令人满意,尽管不建议使用RGB空间:
public double colourDistance(int red1,int green1, int blue1, int red2, int green2, int blue2)
{
double rmean = ( red1 + red2 )/2;
int r = red1 - red2;
int g = green1 - green2;
int b = blue1 - blue2;
double weightR = 2 + rmean/256;
double weightG = 4.0;
double weightB = 2 + (255-rmean)/256;
return Math.sqrt(weightR*r*r + weightG*g*g + weightB*b*b);
}
然后我用下面的方法得到相似度的百分比:
double maxColDist = 764.8339663572415;
double d1 = colourDistance(red1,green1,blue1,red2,green2,blue2);
String s1 = (int) Math.round(((maxColDist-d1)/maxColDist)*100) + "% match";
它工作得很好。
快速回答
我找到这个帖子是因为我需要这个问题的Swift版本。由于还没有人给出答案,我的答案是:
extension UIColor {
var rgba: (red: CGFloat, green: CGFloat, blue: CGFloat, alpha: CGFloat) {
var red: CGFloat = 0
var green: CGFloat = 0
var blue: CGFloat = 0
var alpha: CGFloat = 0
getRed(&red, green: &green, blue: &blue, alpha: &alpha)
return (red, green, blue, alpha)
}
func isSimilar(to colorB: UIColor) -> Bool {
let rgbA = self.rgba
let rgbB = colorB.rgba
let diffRed = abs(CGFloat(rgbA.red) - CGFloat(rgbB.red))
let diffGreen = abs(rgbA.green - rgbB.green)
let diffBlue = abs(rgbA.blue - rgbB.blue)
let pctRed = diffRed
let pctGreen = diffGreen
let pctBlue = diffBlue
let pct = (pctRed + pctGreen + pctBlue) / 3 * 100
return pct < 10 ? true : false
}
}
用法:
let black: UIColor = UIColor.black
let white: UIColor = UIColor.white
let similar: Bool = black.isSimilar(to: white)
我设置小于10%的差异返回相似的颜色,但你可以自定义这自己。