我想设计一个程序,可以帮助我在5种预定义的颜色中评估哪一种更类似于可变颜色,以及与可变颜色的百分比。问题是我不知道如何手动一步一步地做到这一点。所以想一个程序就更难了。

更多细节:颜色来自不同颜色的管子和凝胶的照片。我有5个不同颜色的管子,每个代表5个等级中的1个。我想拍摄其他样本的照片,然后在电脑上通过比较颜色来评估样本属于哪个级别,我也想知道一个近似的百分比。我想要一个这样做的程序:http://www.colortools.net/color_matcher.html

如果你能告诉我该采取什么步骤,即使它们需要我手动思考和执行。那会很有帮助的。


当前回答

请参阅维基百科关于色差的文章以获得正确的线索。 基本上,你想要在多维颜色空间中计算一个距离度量。

但是RGB并不是“感知上一致的”,所以Vadim建议的欧几里得RGB距离度量将与人类感知的颜色之间的距离不匹配。首先,L*a*b*是一个感知上均匀的颜色空间,delta度量是常用的。但有更精致的色彩空间和更精致的delta公式,更接近人类的感知。

你需要学习更多关于颜色空间和光源的知识来进行转换。但如果想要一个比欧几里得RGB度量更好的快速公式,只需这样做:

假设你的RGB值在sRGB颜色空间中 找到sRGB到L*a*b*的转换公式 将sRGB颜色转换为L*a*b* 计算两个L*a*b*值之间的delta

计算成本不高,只是一些非线性公式和一些乘法和加法。

其他回答

对于快速和肮脏,你可以做到

import java.awt.Color;
private Color dropPrecision(Color c,int threshold){
    return new Color((c.getRed()/threshold),
                     (c.getGreen()/threshold),
                     (c.getBlue()/threshold));
}
public boolean inThreshold(Color _1,Color _2,int threshold){
    return dropPrecision(_1,threshold)==dropPrecision(_2,threshold);
}

利用整数除法对颜色进行量化。

我猜你最后想分析一幅完整的图像,对吧?所以你可以检查单位颜色矩阵的最小/最大差值。

大多数处理图形的数学操作都使用矩阵,因为使用矩阵的可能算法通常比经典的逐点距离和比较计算更快。(例如,对于使用DirectX, OpenGL,…的操作)

所以我认为你应该从这里开始:

http://en.wikipedia.org/wiki/Identity_matrix

http://en.wikipedia.org/wiki/Matrix_difference_equation

…正如Beska在上面评论的那样:

这可能不会带来最好的“可见”差异……

这也意味着,如果你在处理图像,你的算法取决于你对“相似”的定义。

我尝试了各种方法,如LAB颜色空间,HSV比较,我发现光度在这个目的上非常有效。

这是Python版本

def lum(c):
    def factor(component):
        component = component / 255;
        if (component <= 0.03928):
            component = component / 12.92;
        else:
            component = math.pow(((component + 0.055) / 1.055), 2.4);

        return component
    components = [factor(ci) for ci in c]

    return (components[0] * 0.2126 + components[1] * 0.7152 + components[2] * 0.0722) + 0.05;

def color_distance(c1, c2):

    l1 = lum(c1)
    l2 = lum(c2)
    higher = max(l1, l2)
    lower = min(l1, l2)

    return (higher - lower) / higher


c1 = ImageColor.getrgb('white')
c2 = ImageColor.getrgb('yellow')
print(color_distance(c1, c2))

会给你

0.0687619047619048

您需要将任何RGB颜色转换为Lab颜色空间,以便能够以人类看到它们的方式进行比较。否则你会得到RGB颜色“匹配”在一些非常奇怪的方式。

关于颜色差异的维基百科链接向您介绍了多年来定义的各种Lab颜色空间差异算法。最简单的方法是检查两种实验室颜色的欧几里得距离,可以工作,但有一些缺陷。

在OpenIMAJ项目中有一个更复杂的CIEDE2000算法的Java实现。提供你的两组Lab颜色,它会给你一个距离值。

这只是我第一次想到的一个想法(如果愚蠢的话,对不起)。 颜色的三个分量可以假定为点的三维坐标,然后可以计算点之间的距离。

外汇期货

Point1 has R1 G1 B1
Point2 has R2 G2 B2

颜色之间的距离为

d=sqrt((r2-r1)^2+(g2-g1)^2+(b2-b1)^2)

比例是

p=d/sqrt((255)^2+(255)^2+(255)^2)