我想设计一个程序,可以帮助我在5种预定义的颜色中评估哪一种更类似于可变颜色,以及与可变颜色的百分比。问题是我不知道如何手动一步一步地做到这一点。所以想一个程序就更难了。

更多细节:颜色来自不同颜色的管子和凝胶的照片。我有5个不同颜色的管子,每个代表5个等级中的1个。我想拍摄其他样本的照片,然后在电脑上通过比较颜色来评估样本属于哪个级别,我也想知道一个近似的百分比。我想要一个这样做的程序:http://www.colortools.net/color_matcher.html

如果你能告诉我该采取什么步骤,即使它们需要我手动思考和执行。那会很有帮助的。


当前回答

Kotlin版本与你想匹配的百分比有多少。

方法调用,参数为percent

isMatchingColor(intColor1, intColor2, 95) // should match color if 95% similar

方法体

private fun isMatchingColor(intColor1: Int, intColor2: Int, percent: Int = 90): Boolean {
    val threadSold = 255 - (255 / 100f * percent)

    val diffAlpha = abs(Color.alpha(intColor1) - Color.alpha(intColor2))
    val diffRed = abs(Color.red(intColor1) - Color.red(intColor2))
    val diffGreen = abs(Color.green(intColor1) - Color.green(intColor2))
    val diffBlue = abs(Color.blue(intColor1) - Color.blue(intColor2))

    if (diffAlpha > threadSold) {
        return false
    }

    if (diffRed > threadSold) {
        return false
    }

    if (diffGreen > threadSold) {
        return false
    }

    if (diffBlue > threadSold) {
        return false
    }

    return true
}

其他回答

您需要将任何RGB颜色转换为Lab颜色空间,以便能够以人类看到它们的方式进行比较。否则你会得到RGB颜色“匹配”在一些非常奇怪的方式。

关于颜色差异的维基百科链接向您介绍了多年来定义的各种Lab颜色空间差异算法。最简单的方法是检查两种实验室颜色的欧几里得距离,可以工作,但有一些缺陷。

在OpenIMAJ项目中有一个更复杂的CIEDE2000算法的Java实现。提供你的两组Lab颜色,它会给你一个距离值。

Kotlin版本与你想匹配的百分比有多少。

方法调用,参数为percent

isMatchingColor(intColor1, intColor2, 95) // should match color if 95% similar

方法体

private fun isMatchingColor(intColor1: Int, intColor2: Int, percent: Int = 90): Boolean {
    val threadSold = 255 - (255 / 100f * percent)

    val diffAlpha = abs(Color.alpha(intColor1) - Color.alpha(intColor2))
    val diffRed = abs(Color.red(intColor1) - Color.red(intColor2))
    val diffGreen = abs(Color.green(intColor1) - Color.green(intColor2))
    val diffBlue = abs(Color.blue(intColor1) - Color.blue(intColor2))

    if (diffAlpha > threadSold) {
        return false
    }

    if (diffRed > threadSold) {
        return false
    }

    if (diffGreen > threadSold) {
        return false
    }

    if (diffBlue > threadSold) {
        return false
    }

    return true
}

如果你有两个颜色对象c1和c2,你可以比较c1和c2的每个RGB值。

int diffRed   = Math.abs(c1.getRed()   - c2.getRed());
int diffGreen = Math.abs(c1.getGreen() - c2.getGreen());
int diffBlue  = Math.abs(c1.getBlue()  - c2.getBlue());

你可以将这些值除以饱和度的差异(255),你就会得到两者之间的差异。

float pctDiffRed   = (float)diffRed   / 255;
float pctDiffGreen = (float)diffGreen / 255;
float pctDiffBlue   = (float)diffBlue  / 255;

之后你就可以找到平均色差的百分比。

(pctDiffRed + pctDiffGreen + pctDiffBlue) / 3 * 100

这就得到了c和c之间的百分比差。

Actually I walked the same path a couple of months ago. There is no perfect answer to the question (that was asked here a couple of times) but there is one, more sophisticated than the sqrt(r-r) etc. answer and more easy to implement directly with RGB without moving to all kinds of alternate color spaces. I found this formula here which is a low cost approximation of the quite complicated real formula (by the CIE which is the W3C of colors, since this is a not finished quest, you can find older and simpler color difference equations there). Good Luck.

编辑:为了子孙后代,这里是相关的C代码:

typedef struct {
     unsigned char r, g, b;
} RGB;

double ColourDistance(RGB e1, RGB e2)
{
    long rmean = ( (long)e1.r + (long)e2.r ) / 2;
    long r = (long)e1.r - (long)e2.r;
    long g = (long)e1.g - (long)e2.g;
    long b = (long)e1.b - (long)e2.b;
    return sqrt((((512+rmean)*r*r)>>8) + 4*g*g + (((767-rmean)*b*b)>>8));
}

对于快速和肮脏,你可以做到

import java.awt.Color;
private Color dropPrecision(Color c,int threshold){
    return new Color((c.getRed()/threshold),
                     (c.getGreen()/threshold),
                     (c.getBlue()/threshold));
}
public boolean inThreshold(Color _1,Color _2,int threshold){
    return dropPrecision(_1,threshold)==dropPrecision(_2,threshold);
}

利用整数除法对颜色进行量化。