我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
当前回答
简短javascript版本(es5)
令combine = (list, n) => N == 0 ? [[]]: 列表。flatMap((e, i) => 结合( 列表。切片(i + 1) N - 1 ).Map (c => [e].concat(c)) ); Let res = combine([1,2,3,4], 3); res.forEach(e => console.log(e.join()));
其他回答
现在又出现了祖辈COBOL,一种饱受诟病的语言。
让我们假设一个包含34个元素的数组,每个元素8个字节(完全是任意选择)。其思想是枚举所有可能的4元素组合,并将它们加载到一个数组中。
我们使用4个指标,每个指标代表4个组中的每个位置
数组是这样处理的:
idx1 = 1
idx2 = 2
idx3 = 3
idx4 = 4
我们把idx4从4变到最后。对于每个idx4,我们得到一个唯一的组合 四人一组。当idx4到达数组的末尾时,我们将idx3增加1,并将idx4设置为idx3+1。然后再次运行idx4到最后。我们以这种方式继续,分别增加idx3、idx2和idx1,直到idx1的位置距离数组末端小于4。算法就完成了。
1 --- pos.1
2 --- pos 2
3 --- pos 3
4 --- pos 4
5
6
7
etc.
第一次迭代:
1234
1235
1236
1237
1245
1246
1247
1256
1257
1267
etc.
一个COBOL的例子:
01 DATA_ARAY.
05 FILLER PIC X(8) VALUE "VALUE_01".
05 FILLER PIC X(8) VALUE "VALUE_02".
etc.
01 ARAY_DATA OCCURS 34.
05 ARAY_ITEM PIC X(8).
01 OUTPUT_ARAY OCCURS 50000 PIC X(32).
01 MAX_NUM PIC 99 COMP VALUE 34.
01 INDEXXES COMP.
05 IDX1 PIC 99.
05 IDX2 PIC 99.
05 IDX3 PIC 99.
05 IDX4 PIC 99.
05 OUT_IDX PIC 9(9).
01 WHERE_TO_STOP_SEARCH PIC 99 COMP.
* Stop the search when IDX1 is on the third last array element:
COMPUTE WHERE_TO_STOP_SEARCH = MAX_VALUE - 3
MOVE 1 TO IDX1
PERFORM UNTIL IDX1 > WHERE_TO_STOP_SEARCH
COMPUTE IDX2 = IDX1 + 1
PERFORM UNTIL IDX2 > MAX_NUM
COMPUTE IDX3 = IDX2 + 1
PERFORM UNTIL IDX3 > MAX_NUM
COMPUTE IDX4 = IDX3 + 1
PERFORM UNTIL IDX4 > MAX_NUM
ADD 1 TO OUT_IDX
STRING ARAY_ITEM(IDX1)
ARAY_ITEM(IDX2)
ARAY_ITEM(IDX3)
ARAY_ITEM(IDX4)
INTO OUTPUT_ARAY(OUT_IDX)
ADD 1 TO IDX4
END-PERFORM
ADD 1 TO IDX3
END-PERFORM
ADD 1 TO IDX2
END_PERFORM
ADD 1 TO IDX1
END-PERFORM.
不需要进行集合操作。这个问题几乎和循环K个嵌套循环一样,但你必须小心索引和边界(忽略Java和OOP的东西):
public class CombinationsGen {
private final int n;
private final int k;
private int[] buf;
public CombinationsGen(int n, int k) {
this.n = n;
this.k = k;
}
public void combine(Consumer<int[]> consumer) {
buf = new int[k];
rec(0, 0, consumer);
}
private void rec(int index, int next, Consumer<int[]> consumer) {
int max = n - index;
if (index == k - 1) {
for (int i = 0; i < max && next < n; i++) {
buf[index] = next;
next++;
consumer.accept(buf);
}
} else {
for (int i = 0; i < max && next + index < n; i++) {
buf[index] = next;
next++;
rec(index + 1, next, consumer);
}
}
}
}
像这样使用:
CombinationsGen gen = new CombinationsGen(5, 2);
AtomicInteger total = new AtomicInteger();
gen.combine(arr -> {
System.out.println(Arrays.toString(arr));
total.incrementAndGet();
});
System.out.println(total);
获得预期的结果:
[0, 1]
[0, 2]
[0, 3]
[0, 4]
[1, 2]
[1, 3]
[1, 4]
[2, 3]
[2, 4]
[3, 4]
10
最后,将索引映射到您可能拥有的任何数据集。
下面的递归算法从有序集中选取所有k元素组合:
选择组合中的第一个元素I 将I与从大于I的元素集中递归选择的k-1个元素的组合组合。
对集合中的每一个i进行上述迭代。
为了避免重复,您必须选择比i大的其余元素。这样[3,5]将只被选中一次,即[3]与[5]结合,而不是两次(该条件消除了[5]+[3])。没有这个条件,你得到的是变化而不是组合。
短快C实现
#include <stdio.h>
void main(int argc, char *argv[]) {
const int n = 6; /* The size of the set; for {1, 2, 3, 4} it's 4 */
const int p = 4; /* The size of the subsets; for {1, 2}, {1, 3}, ... it's 2 */
int comb[40] = {0}; /* comb[i] is the index of the i-th element in the combination */
int i = 0;
for (int j = 0; j <= n; j++) comb[j] = 0;
while (i >= 0) {
if (comb[i] < n + i - p + 1) {
comb[i]++;
if (i == p - 1) { for (int j = 0; j < p; j++) printf("%d ", comb[j]); printf("\n"); }
else { comb[++i] = comb[i - 1]; }
} else i--; }
}
要查看它有多快,请使用这段代码并测试它
#include <time.h>
#include <stdio.h>
void main(int argc, char *argv[]) {
const int n = 32; /* The size of the set; for {1, 2, 3, 4} it's 4 */
const int p = 16; /* The size of the subsets; for {1, 2}, {1, 3}, ... it's 2 */
int comb[40] = {0}; /* comb[i] is the index of the i-th element in the combination */
int c = 0; int i = 0;
for (int j = 0; j <= n; j++) comb[j] = 0;
while (i >= 0) {
if (comb[i] < n + i - p + 1) {
comb[i]++;
/* if (i == p - 1) { for (int j = 0; j < p; j++) printf("%d ", comb[j]); printf("\n"); } */
if (i == p - 1) c++;
else { comb[++i] = comb[i - 1]; }
} else i--; }
printf("%d!%d == %d combination(s) in %15.3f second(s)\n ", p, n, c, clock()/1000.0);
}
使用cmd.exe (windows)测试:
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.
c:\Program Files\lcc\projects>combination
16!32 == 601080390 combination(s) in 5.781 second(s)
c:\Program Files\lcc\projects>
祝你有愉快的一天。
简短的python代码,产生索引位置
def yield_combos(n,k):
# n is set size, k is combo size
i = 0
a = [0]*k
while i > -1:
for j in range(i+1, k):
a[j] = a[j-1]+1
i=j
yield a
while a[i] == i + n - k:
i -= 1
a[i] += 1