我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

我的实现在c/c++

#include <unistd.h>
#include <stdio.h>
#include <iconv.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>

int main(int argc, char **argv)
{
    int opt = -1, min_len = 0, max_len = 0;
    char ofile[256], fchar[2], tchar[2];
    ofile[0] = 0;
    fchar[0] = 0;
    tchar[0] = 0;
    while((opt = getopt(argc, argv, "o:f:t:l:L:")) != -1)
    {
            switch(opt)
            {
                    case 'o':
                    strncpy(ofile, optarg, 255);
                    break;
                    case 'f':
                    strncpy(fchar, optarg, 1);
                    break;
                    case 't':
                    strncpy(tchar, optarg, 1);
                    break;
                    case 'l':
                    min_len = atoi(optarg);
                    break;
                    case 'L':
                    max_len = atoi(optarg);
                    break;
                    default:
                    printf("usage: %s -oftlL\n\t-o output file\n\t-f from char\n\t-t to char\n\t-l min seq len\n\t-L max seq len", argv[0]);
            }
    }
if(max_len < 1)
{
    printf("error, length must be more than 0\n");
    return 1;
}
if(min_len > max_len)
{
    printf("error, max length must be greater or equal min_length\n");
    return 1;
}
if((int)fchar[0] > (int)tchar[0])
{
    printf("error, invalid range specified\n");
    return 1;
}
FILE *out = fopen(ofile, "w");
if(!out)
{
    printf("failed to open input file with error: %s\n", strerror(errno));
    return 1;
}
int cur_len = min_len;
while(cur_len <= max_len)
{
    char buf[cur_len];
    for(int i = 0; i < cur_len; i++)
        buf[i] = fchar[0];
    fwrite(buf, cur_len, 1, out);
    fwrite("\n", 1, 1, out);
    while(buf[0] != (tchar[0]+1))
    {
        while(buf[cur_len-1] < tchar[0])
        {
            (int)buf[cur_len-1]++;
            fwrite(buf, cur_len, 1, out);
            fwrite("\n", 1, 1, out);
        }
        if(cur_len < 2)
            break;
        if(buf[0] == tchar[0])
        {
            bool stop = true;
            for(int i = 1; i < cur_len; i++)
            {
                if(buf[i] != tchar[0])
                {
                    stop = false;
                    break;
                }
            }
            if(stop)
                break;
        }
        int u = cur_len-2;
        for(; u>=0 && buf[u] >= tchar[0]; u--)
            ;
        (int)buf[u]++;
        for(int i = u+1; i < cur_len; i++)
            buf[i] = fchar[0];
        fwrite(buf, cur_len, 1, out);
        fwrite("\n", 1, 1, out);
    }
    cur_len++;
}
fclose(out);
return 0;
}

这里我的实现在c++,它写所有的组合到指定的文件,但行为可以改变,我在生成各种字典,它接受最小和最大长度和字符范围,目前只有ANSI支持,它足以满足我的需求

其他回答

遵循Haskell代码同时计算组合数和组合,由于Haskell的惰性,您可以得到其中的一部分而无需计算另一部分。

import Data.Semigroup
import Data.Monoid

data Comb = MkComb {count :: Int, combinations :: [[Int]]} deriving (Show, Eq, Ord)

instance Semigroup Comb where
    (MkComb c1 cs1) <> (MkComb c2 cs2) = MkComb (c1 + c2) (cs1 ++ cs2)

instance Monoid Comb where
    mempty = MkComb 0 []

addElem :: Comb -> Int -> Comb
addElem (MkComb c cs) x = MkComb c (map (x :) cs)

comb :: Int -> Int -> Comb
comb n k | n < 0 || k < 0 = error "error in `comb n k`, n and k should be natural number"
comb n k | k == 0 || k == n = MkComb 1 [(take k [k-1,k-2..0])]
comb n k | n < k = mempty
comb n k = comb (n-1) k <> (comb (n-1) (k-1) `addElem` (n-1))

它是这样工作的:

*Main> comb 0 1
MkComb {count = 0, combinations = []}

*Main> comb 0 0
MkComb {count = 1, combinations = [[]]}

*Main> comb 1 1
MkComb {count = 1, combinations = [[0]]}

*Main> comb 4 2
MkComb {count = 6, combinations = [[1,0],[2,0],[2,1],[3,0],[3,1],[3,2]]}

*Main> count (comb 10 5)
252

赶时髦,发布另一个解决方案。这是一个通用的Java实现。输入:(int k)是要选择的元素数量,(List<T> List)是要选择的列表。返回一个组合列表(list < list <T>>)。

public static <T> List<List<T>> getCombinations(int k, List<T> list) {
    List<List<T>> combinations = new ArrayList<List<T>>();
    if (k == 0) {
        combinations.add(new ArrayList<T>());
        return combinations;
    }
    for (int i = 0; i < list.size(); i++) {
        T element = list.get(i);
        List<T> rest = getSublist(list, i+1);
        for (List<T> previous : getCombinations(k-1, rest)) {
            previous.add(element);
            combinations.add(previous);
        }
    }
    return combinations;
}

public static <T> List<T> getSublist(List<T> list, int i) {
    List<T> sublist = new ArrayList<T>();
    for (int j = i; j < list.size(); j++) {
        sublist.add(list.get(j));
    }
    return sublist;
}

递归,一个很简单的答案,combo,在Free Pascal中。

    procedure combinata (n, k :integer; producer :oneintproc);

        procedure combo (ndx, nbr, len, lnd :integer);
        begin
            for nbr := nbr to len do begin
                productarray[ndx] := nbr;
                if len < lnd then
                    combo(ndx+1,nbr+1,len+1,lnd)
                else
                    producer(k);
            end;
        end;

    begin
        combo (0, 0, n-k, n-1);
    end;

“producer”处理为每个组合生成的产品数组。

下面是c++中的迭代算法,它不使用STL,也不使用递归,也不使用条件嵌套循环。这样更快,它不执行任何元素交换,也不会给堆栈带来递归负担,还可以通过分别用mallloc()、free()和printf()替换new、delete和std::cout轻松地移植到ANSI C。

如果你想用不同或更长的字母显示元素,那么改变*字母参数以指向不同于"abcdefg"的字符串。

void OutputArrayChar(unsigned int* ka, size_t n, const char *alphabet) {
    for (int i = 0; i < n; i++)
        std::cout << alphabet[ka[i]] << ",";
    std::cout << endl;
}
    

void GenCombinations(const unsigned int N, const unsigned int K, const char *alphabet) {
    unsigned int *ka = new unsigned int [K];  //dynamically allocate an array of UINTs
    unsigned int ki = K-1;                    //Point ki to the last elemet of the array
    ka[ki] = N-1;                             //Prime the last elemet of the array.
    
    while (true) {
        unsigned int tmp = ka[ki];  //Optimization to prevent reading ka[ki] repeatedly

        while (ki)                  //Fill to the left with consecutive descending values (blue squares)
            ka[--ki] = --tmp;
        OutputArrayChar(ka, K, alphabet);
    
        while (--ka[ki] == ki) {    //Decrement and check if the resulting value equals the index (bright green squares)
            OutputArrayChar(ka, K, alphabet);
            if (++ki == K) {      //Exit condition (all of the values in the array are flush to the left)
                delete[] ka;
                return;
            }                   
        }
    }
}
    

int main(int argc, char *argv[])
{
    GenCombinations(7, 4, "abcdefg");
    return 0;
}

重要提示:字母参数*必须指向至少N个字符的字符串。你也可以传递一个在其他地方定义的字符串地址。

组合:从“7选4”中选择。

算法:

从1数到2^n。 将每个数字转换为二进制表示。 根据位置,将每个“on”位转换为集合中的元素。

在c#中:

void Main()
{
    var set = new [] {"A", "B", "C", "D" }; //, "E", "F", "G", "H", "I", "J" };

    var kElement = 2;

    for(var i = 1; i < Math.Pow(2, set.Length); i++) {
        var result = Convert.ToString(i, 2).PadLeft(set.Length, '0');
        var cnt = Regex.Matches(Regex.Escape(result),  "1").Count; 
        if (cnt == kElement) {
            for(int j = 0; j < set.Length; j++)
                if ( Char.GetNumericValue(result[j]) == 1)
                    Console.Write(set[j]);
            Console.WriteLine();
        }
    }
}

为什么它能起作用?

在n元素集的子集和n位序列之间存在双射。

这意味着我们可以通过数数序列来计算出有多少个子集。

例如,下面的四个元素集可以用{0,1}X {0,1} X {0,1} X{0,1}(或2^4)个不同的序列表示。

我们要做的就是从1数到2^n来找到所有的组合。(我们忽略空集。)接下来,将数字转换为二进制表示。然后将集合中的元素替换为“on”位。

如果只需要k个元素的结果,则只在k位为“on”时打印。

(如果你想要所有的子集,而不是k长度的子集,删除cnt/kElement部分。)

(有关证明,请参阅麻省理工学院免费课件计算机科学数学,雷曼等,第11.2.2节。https://ocw.mit.edu/courses/electrical -工程-和-计算机- science/6 - 042 j -数学- -计算机科学-下降- 2010/readings/)