我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
当前回答
基于java解决方案的短php算法返回k元素从n(二项式系数)的所有组合:
$array = array(1,2,3,4,5);
$array_result = NULL;
$array_general = NULL;
function combinations($array, $len, $start_position, $result_array, $result_len, &$general_array)
{
if($len == 0)
{
$general_array[] = $result_array;
return;
}
for ($i = $start_position; $i <= count($array) - $len; $i++)
{
$result_array[$result_len - $len] = $array[$i];
combinations($array, $len-1, $i+1, $result_array, $result_len, $general_array);
}
}
combinations($array, 3, 0, $array_result, 3, $array_general);
echo "<pre>";
print_r($array_general);
echo "</pre>";
相同的解决方案,但在javascript:
var newArray = [1, 2, 3, 4, 5];
var arrayResult = [];
var arrayGeneral = [];
function combinations(newArray, len, startPosition, resultArray, resultLen, arrayGeneral) {
if(len === 0) {
var tempArray = [];
resultArray.forEach(value => tempArray.push(value));
arrayGeneral.push(tempArray);
return;
}
for (var i = startPosition; i <= newArray.length - len; i++) {
resultArray[resultLen - len] = newArray[i];
combinations(newArray, len-1, i+1, resultArray, resultLen, arrayGeneral);
}
}
combinations(newArray, 3, 0, arrayResult, 3, arrayGeneral);
console.log(arrayGeneral);
其他回答
现在又出现了祖辈COBOL,一种饱受诟病的语言。
让我们假设一个包含34个元素的数组,每个元素8个字节(完全是任意选择)。其思想是枚举所有可能的4元素组合,并将它们加载到一个数组中。
我们使用4个指标,每个指标代表4个组中的每个位置
数组是这样处理的:
idx1 = 1
idx2 = 2
idx3 = 3
idx4 = 4
我们把idx4从4变到最后。对于每个idx4,我们得到一个唯一的组合 四人一组。当idx4到达数组的末尾时,我们将idx3增加1,并将idx4设置为idx3+1。然后再次运行idx4到最后。我们以这种方式继续,分别增加idx3、idx2和idx1,直到idx1的位置距离数组末端小于4。算法就完成了。
1 --- pos.1
2 --- pos 2
3 --- pos 3
4 --- pos 4
5
6
7
etc.
第一次迭代:
1234
1235
1236
1237
1245
1246
1247
1256
1257
1267
etc.
一个COBOL的例子:
01 DATA_ARAY.
05 FILLER PIC X(8) VALUE "VALUE_01".
05 FILLER PIC X(8) VALUE "VALUE_02".
etc.
01 ARAY_DATA OCCURS 34.
05 ARAY_ITEM PIC X(8).
01 OUTPUT_ARAY OCCURS 50000 PIC X(32).
01 MAX_NUM PIC 99 COMP VALUE 34.
01 INDEXXES COMP.
05 IDX1 PIC 99.
05 IDX2 PIC 99.
05 IDX3 PIC 99.
05 IDX4 PIC 99.
05 OUT_IDX PIC 9(9).
01 WHERE_TO_STOP_SEARCH PIC 99 COMP.
* Stop the search when IDX1 is on the third last array element:
COMPUTE WHERE_TO_STOP_SEARCH = MAX_VALUE - 3
MOVE 1 TO IDX1
PERFORM UNTIL IDX1 > WHERE_TO_STOP_SEARCH
COMPUTE IDX2 = IDX1 + 1
PERFORM UNTIL IDX2 > MAX_NUM
COMPUTE IDX3 = IDX2 + 1
PERFORM UNTIL IDX3 > MAX_NUM
COMPUTE IDX4 = IDX3 + 1
PERFORM UNTIL IDX4 > MAX_NUM
ADD 1 TO OUT_IDX
STRING ARAY_ITEM(IDX1)
ARAY_ITEM(IDX2)
ARAY_ITEM(IDX3)
ARAY_ITEM(IDX4)
INTO OUTPUT_ARAY(OUT_IDX)
ADD 1 TO IDX4
END-PERFORM
ADD 1 TO IDX3
END-PERFORM
ADD 1 TO IDX2
END_PERFORM
ADD 1 TO IDX1
END-PERFORM.
由于没有提到编程语言,我假设列表也是可以的。下面是一个OCaml版本,适用于短列表(非尾递归)。给定一个包含任意类型元素的列表l和一个整数n,如果我们假设结果列表中元素的顺序被忽略,它将返回一个包含l的n个元素的所有可能列表的列表,即list ['a';'b']与['b';'a']相同,并且将报告一次。因此,结果列表的大小将是((list。长度l)选择n)。
递归的直观原理如下:取列表的头,然后进行两次递归调用:
递归调用1 (RC1):到列表的尾部,但选择n-1个元素 递归调用2 (RC2):到列表的尾部,但选择n个元素
要组合递归结果,list-乘(请使用奇数名称)列表的头部与RC1的结果,然后附加(@)RC2的结果。List-multiply是如下操作lmul:
a lmul [ l1 ; l2 ; l3] = [a::l1 ; a::l2 ; a::l3]
Lmul在下面的代码中实现
List.map (fun x -> h::x)
当列表的大小等于您想要选择的元素数量时,递归将终止,在这种情况下,您只需返回列表本身。
下面是OCaml中实现上述算法的四行代码:
let rec choose l n = match l, (List.length l) with
| _, lsize when n==lsize -> [l]
| h::t, _ -> (List.map (fun x-> h::x) (choose t (n-1))) @ (choose t n)
| [], _ -> []
这是一个优雅的Scala通用实现,如99个Scala问题所述。
object P26 {
def flatMapSublists[A,B](ls: List[A])(f: (List[A]) => List[B]): List[B] =
ls match {
case Nil => Nil
case sublist@(_ :: tail) => f(sublist) ::: flatMapSublists(tail)(f)
}
def combinations[A](n: Int, ls: List[A]): List[List[A]] =
if (n == 0) List(Nil)
else flatMapSublists(ls) { sl =>
combinations(n - 1, sl.tail) map {sl.head :: _}
}
}
一个简洁的Javascript解决方案:
Array.prototype.combine=function combine(k){
var toCombine=this;
var last;
function combi(n,comb){
var combs=[];
for ( var x=0,y=comb.length;x<y;x++){
for ( var l=0,m=toCombine.length;l<m;l++){
combs.push(comb[x]+toCombine[l]);
}
}
if (n<k-1){
n++;
combi(n,combs);
} else{last=combs;}
}
combi(1,toCombine);
return last;
}
// Example:
// var toCombine=['a','b','c'];
// var results=toCombine.combine(4);
递归,一个很简单的答案,combo,在Free Pascal中。
procedure combinata (n, k :integer; producer :oneintproc);
procedure combo (ndx, nbr, len, lnd :integer);
begin
for nbr := nbr to len do begin
productarray[ndx] := nbr;
if len < lnd then
combo(ndx+1,nbr+1,len+1,lnd)
else
producer(k);
end;
end;
begin
combo (0, 0, n-k, n-1);
end;
“producer”处理为每个组合生成的产品数组。