我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

短快C实现

#include <stdio.h>

void main(int argc, char *argv[]) {
  const int n = 6; /* The size of the set; for {1, 2, 3, 4} it's 4 */
  const int p = 4; /* The size of the subsets; for {1, 2}, {1, 3}, ... it's 2 */
  int comb[40] = {0}; /* comb[i] is the index of the i-th element in the combination */

  int i = 0;
  for (int j = 0; j <= n; j++) comb[j] = 0;
  while (i >= 0) {
    if (comb[i] < n + i - p + 1) {
       comb[i]++;
       if (i == p - 1) { for (int j = 0; j < p; j++) printf("%d ", comb[j]); printf("\n"); }
       else            { comb[++i] = comb[i - 1]; }
    } else i--; }
}

要查看它有多快,请使用这段代码并测试它

#include <time.h>
#include <stdio.h>

void main(int argc, char *argv[]) {
  const int n = 32; /* The size of the set; for {1, 2, 3, 4} it's 4 */
  const int p = 16; /* The size of the subsets; for {1, 2}, {1, 3}, ... it's 2 */
  int comb[40] = {0}; /* comb[i] is the index of the i-th element in the combination */

  int c = 0; int i = 0;
  for (int j = 0; j <= n; j++) comb[j] = 0;
  while (i >= 0) {
    if (comb[i] < n + i - p + 1) {
       comb[i]++;
       /* if (i == p - 1) { for (int j = 0; j < p; j++) printf("%d ", comb[j]); printf("\n"); } */
       if (i == p - 1) c++;
       else            { comb[++i] = comb[i - 1]; }
    } else i--; }
  printf("%d!%d == %d combination(s) in %15.3f second(s)\n ", p, n, c, clock()/1000.0);
}

使用cmd.exe (windows)测试:

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

c:\Program Files\lcc\projects>combination
16!32 == 601080390 combination(s) in          5.781 second(s)

c:\Program Files\lcc\projects>

祝你有愉快的一天。

其他回答

短快C实现

#include <stdio.h>

void main(int argc, char *argv[]) {
  const int n = 6; /* The size of the set; for {1, 2, 3, 4} it's 4 */
  const int p = 4; /* The size of the subsets; for {1, 2}, {1, 3}, ... it's 2 */
  int comb[40] = {0}; /* comb[i] is the index of the i-th element in the combination */

  int i = 0;
  for (int j = 0; j <= n; j++) comb[j] = 0;
  while (i >= 0) {
    if (comb[i] < n + i - p + 1) {
       comb[i]++;
       if (i == p - 1) { for (int j = 0; j < p; j++) printf("%d ", comb[j]); printf("\n"); }
       else            { comb[++i] = comb[i - 1]; }
    } else i--; }
}

要查看它有多快,请使用这段代码并测试它

#include <time.h>
#include <stdio.h>

void main(int argc, char *argv[]) {
  const int n = 32; /* The size of the set; for {1, 2, 3, 4} it's 4 */
  const int p = 16; /* The size of the subsets; for {1, 2}, {1, 3}, ... it's 2 */
  int comb[40] = {0}; /* comb[i] is the index of the i-th element in the combination */

  int c = 0; int i = 0;
  for (int j = 0; j <= n; j++) comb[j] = 0;
  while (i >= 0) {
    if (comb[i] < n + i - p + 1) {
       comb[i]++;
       /* if (i == p - 1) { for (int j = 0; j < p; j++) printf("%d ", comb[j]); printf("\n"); } */
       if (i == p - 1) c++;
       else            { comb[++i] = comb[i - 1]; }
    } else i--; }
  printf("%d!%d == %d combination(s) in %15.3f second(s)\n ", p, n, c, clock()/1000.0);
}

使用cmd.exe (windows)测试:

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

c:\Program Files\lcc\projects>combination
16!32 == 601080390 combination(s) in          5.781 second(s)

c:\Program Files\lcc\projects>

祝你有愉快的一天。

假设你的字母数组是这样的:"ABCDEFGH"。你有三个下标(i, j, k)来表示你要用哪个字母来表示当前单词。

A B C D E F G H
^ ^ ^
i j k

首先你改变k,所以下一步看起来像这样:

A B C D E F G H
^ ^   ^
i j   k

如果你到达终点,你继续改变j和k。

A B C D E F G H
^   ^ ^
i   j k

A B C D E F G H
^   ^   ^
i   j   k

一旦j达到G, i也开始变化。

A B C D E F G H
  ^ ^ ^
  i j k

A B C D E F G H
  ^ ^   ^
  i j   k
...

用代码写出来是这样的

void print_combinations(const char *string)
{
    int i, j, k;
    int len = strlen(string);

    for (i = 0; i < len - 2; i++)
    {
        for (j = i + 1; j < len - 1; j++)
        {
            for (k = j + 1; k < len; k++)
                printf("%c%c%c\n", string[i], string[j], string[k]);
        }
    }
}

我知道这个问题已经有很多答案了,但我想在JavaScript中添加我自己的贡献,它由两个函数组成——一个生成原始n元素集的所有可能不同的k子集,另一个使用第一个函数生成原始n元素集的幂集。

下面是这两个函数的代码:

//Generate combination subsets from a base set of elements (passed as an array). This function should generate an
//array containing nCr elements, where nCr = n!/[r! (n-r)!].

//Arguments:

//[1] baseSet :     The base set to create the subsets from (e.g., ["a", "b", "c", "d", "e", "f"])
//[2] cnt :         The number of elements each subset is to contain (e.g., 3)

function MakeCombinationSubsets(baseSet, cnt)
{
    var bLen = baseSet.length;
    var indices = [];
    var subSet = [];
    var done = false;
    var result = [];        //Contains all the combination subsets generated
    var done = false;
    var i = 0;
    var idx = 0;
    var tmpIdx = 0;
    var incr = 0;
    var test = 0;
    var newIndex = 0;
    var inBounds = false;
    var tmpIndices = [];
    var checkBounds = false;

    //First, generate an array whose elements are indices into the base set ...

    for (i=0; i<cnt; i++)

        indices.push(i);

    //Now create a clone of this array, to be used in the loop itself ...

        tmpIndices = [];

        tmpIndices = tmpIndices.concat(indices);

    //Now initialise the loop ...

    idx = cnt - 1;      //point to the last element of the indices array
    incr = 0;
    done = false;
    while (!done)
    {
    //Create the current subset ...

        subSet = [];    //Make sure we begin with a completely empty subset before continuing ...

        for (i=0; i<cnt; i++)

            subSet.push(baseSet[tmpIndices[i]]);    //Create the current subset, using items selected from the
                                                    //base set, using the indices array (which will change as we
                                                    //continue scanning) ...

    //Add the subset thus created to the result set ...

        result.push(subSet);

    //Now update the indices used to select the elements of the subset. At the start, idx will point to the
    //rightmost index in the indices array, but the moment that index moves out of bounds with respect to the
    //base set, attention will be shifted to the next left index.

        test = tmpIndices[idx] + 1;

        if (test >= bLen)
        {
        //Here, we're about to move out of bounds with respect to the base set. We therefore need to scan back,
        //and update indices to the left of the current one. Find the leftmost index in the indices array that
        //isn't going to  move out of bounds with respect to the base set ...

            tmpIdx = idx - 1;
            incr = 1;

            inBounds = false;       //Assume at start that the index we're checking in the loop below is out of bounds
            checkBounds = true;

            while (checkBounds)
            {
                if (tmpIdx < 0)
                {
                    checkBounds = false;    //Exit immediately at this point
                }
                else
                {
                    newIndex = tmpIndices[tmpIdx] + 1;
                    test = newIndex + incr;

                    if (test >= bLen)
                    {
                    //Here, incrementing the current selected index will take that index out of bounds, so
                    //we move on to the next index to the left ...

                        tmpIdx--;
                        incr++;
                    }
                    else
                    {
                    //Here, the index will remain in bounds if we increment it, so we
                    //exit the loop and signal that we're in bounds ...

                        inBounds = true;
                        checkBounds = false;

                    //End if/else
                    }

                //End if 
                }               
            //End while
            }
    //At this point, if we'er still in bounds, then we continue generating subsets, but if not, we abort immediately.

            if (!inBounds)
                done = true;
            else
            {
            //Here, we're still in bounds. We need to update the indices accordingly. NOTE: at this point, although a
            //left positioned index in the indices array may still be in bounds, incrementing it to generate indices to
            //the right may take those indices out of bounds. We therefore need to check this as we perform the index
            //updating of the indices array.

                tmpIndices[tmpIdx] = newIndex;

                inBounds = true;
                checking = true;
                i = tmpIdx + 1;

                while (checking)
                {
                    test = tmpIndices[i - 1] + 1;   //Find out if incrementing the left adjacent index takes it out of bounds

                    if (test >= bLen)
                    {
                        inBounds = false;           //If we move out of bounds, exit NOW ...
                        checking = false;
                    }
                    else
                    {
                        tmpIndices[i] = test;       //Otherwise, update the indices array ...

                        i++;                        //Now move on to the next index to the right in the indices array ...

                        checking = (i < cnt);       //And continue until we've exhausted all the indices array elements ...
                    //End if/else
                    }
                //End while
                }
                //At this point, if the above updating of the indices array has moved any of its elements out of bounds,
                //we abort subset construction from this point ...
                if (!inBounds)
                    done = true;
            //End if/else
            }
        }
        else
        {
        //Here, the rightmost index under consideration isn't moving out of bounds with respect to the base set when
        //we increment it, so we simply increment and continue the loop ...
            tmpIndices[idx] = test;
        //End if
        }
    //End while
    }
    return(result);
//End function
}


function MakePowerSet(baseSet)
{
    var bLen = baseSet.length;
    var result = [];
    var i = 0;
    var partialSet = [];

    result.push([]);    //add the empty set to the power set

    for (i=1; i<bLen; i++)
    {
        partialSet = MakeCombinationSubsets(baseSet, i);
        result = result.concat(partialSet);
    //End i loop
    }
    //Now, finally, add the base set itself to the power set to make it complete ...

    partialSet = [];
    partialSet.push(baseSet);
    result = result.concat(partialSet);

    return(result);
    //End function
}

我用集合["a", "b", "c", "d", "e", "f"]作为基本集进行了测试,并运行代码以产生以下幂集:

[]
["a"]
["b"]
["c"]
["d"]
["e"]
["f"]
["a","b"]
["a","c"]
["a","d"]
["a","e"]
["a","f"]
["b","c"]
["b","d"]
["b","e"]
["b","f"]
["c","d"]
["c","e"]
["c","f"]
["d","e"]
["d","f"]
["e","f"]
["a","b","c"]
["a","b","d"]
["a","b","e"]
["a","b","f"]
["a","c","d"]
["a","c","e"]
["a","c","f"]
["a","d","e"]
["a","d","f"]
["a","e","f"]
["b","c","d"]
["b","c","e"]
["b","c","f"]
["b","d","e"]
["b","d","f"]
["b","e","f"]
["c","d","e"]
["c","d","f"]
["c","e","f"]
["d","e","f"]
["a","b","c","d"]
["a","b","c","e"]
["a","b","c","f"]
["a","b","d","e"]
["a","b","d","f"]
["a","b","e","f"]
["a","c","d","e"]
["a","c","d","f"]
["a","c","e","f"]
["a","d","e","f"]
["b","c","d","e"]
["b","c","d","f"]
["b","c","e","f"]
["b","d","e","f"]
["c","d","e","f"]
["a","b","c","d","e"]
["a","b","c","d","f"]
["a","b","c","e","f"]
["a","b","d","e","f"]
["a","c","d","e","f"]
["b","c","d","e","f"]
["a","b","c","d","e","f"]

只要复制粘贴这两个函数“原样”,你就有了提取n元素集的不同k子集所需的基本知识,并生成该n元素集的幂集(如果你愿意的话)。

我并不是说这很优雅,只是说它在经过大量的测试(并在调试阶段将空气变为蓝色:)之后可以工作。

如果你可以使用SQL语法——比如,如果你使用LINQ访问一个结构或数组的字段,或者直接访问一个数据库,其中有一个名为“Alphabet”的表,只有一个字符字段“Letter”,你可以适应以下代码:

SELECT A.Letter, B.Letter, C.Letter
FROM Alphabet AS A, Alphabet AS B, Alphabet AS C
WHERE A.Letter<>B.Letter AND A.Letter<>C.Letter AND B.Letter<>C.Letter
AND A.Letter<B.Letter AND B.Letter<C.Letter

这将返回所有3个字母的组合,不管你在表格“字母表”中有多少个字母(它可以是3,8,10,27等)。

如果你想要的是所有的排列,而不是组合(也就是说,你想要“ACB”和“ABC”被视为不同的,而不是只出现一次),只需删除最后一行(and一行),就完成了。

Post-Edit:重新阅读问题后,我意识到需要的是通用算法,而不仅仅是选择3个项目的特定算法。Adam Hughes的答案是完整的,不幸的是我还不能投票。这个答案很简单,但只适用于你想要三样东西的时候。

Clojure版本:

(defn comb [k l]
  (if (= 1 k) (map vector l)
      (apply concat
             (map-indexed
              #(map (fn [x] (conj x %2))
                    (comb (dec k) (drop (inc %1) l)))
              l))))