我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
当前回答
这是一个c++解决方案,我提出使用递归和位移位。它也可以在C语言中工作。
void r_nCr(unsigned int startNum, unsigned int bitVal, unsigned int testNum) // Should be called with arguments (2^r)-1, 2^(r-1), 2^(n-1)
{
unsigned int n = (startNum - bitVal) << 1;
n += bitVal ? 1 : 0;
for (unsigned int i = log2(testNum) + 1; i > 0; i--) // Prints combination as a series of 1s and 0s
cout << (n >> (i - 1) & 1);
cout << endl;
if (!(n & testNum) && n != startNum)
r_nCr(n, bitVal, testNum);
if (bitVal && bitVal < testNum)
r_nCr(startNum, bitVal >> 1, testNum);
}
你可以在这里找到这是如何工作的解释。
其他回答
Python中的简短示例:
def comb(sofar, rest, n):
if n == 0:
print sofar
else:
for i in range(len(rest)):
comb(sofar + rest[i], rest[i+1:], n-1)
>>> comb("", "abcde", 3)
abc
abd
abe
acd
ace
ade
bcd
bce
bde
cde
为了解释,递归方法用下面的例子描述:
示例:A B C D E 3的所有组合是:
A与其余2的所有组合(B C D E) B与其余2的所有组合(C D E) C与其余2的所有组合(D E)
这是一个优雅的Scala通用实现,如99个Scala问题所述。
object P26 {
def flatMapSublists[A,B](ls: List[A])(f: (List[A]) => List[B]): List[B] =
ls match {
case Nil => Nil
case sublist@(_ :: tail) => f(sublist) ::: flatMapSublists(tail)(f)
}
def combinations[A](n: Int, ls: List[A]): List[List[A]] =
if (n == 0) List(Nil)
else flatMapSublists(ls) { sl =>
combinations(n - 1, sl.tail) map {sl.head :: _}
}
}
Lisp宏为所有值r(每次取)生成代码
(defmacro txaat (some-list taken-at-a-time)
(let* ((vars (reverse (truncate-list '(a b c d e f g h i j) taken-at-a-time))))
`(
,@(loop for i below taken-at-a-time
for j in vars
with nested = nil
finally (return nested)
do
(setf
nested
`(loop for ,j from
,(if (< i (1- (length vars)))
`(1+ ,(nth (1+ i) vars))
0)
below (- (length ,some-list) ,i)
,@(if (equal i 0)
`(collect
(list
,@(loop for k from (1- taken-at-a-time) downto 0
append `((nth ,(nth k vars) ,some-list)))))
`(append ,nested))))))))
So,
CL-USER> (macroexpand-1 '(txaat '(a b c d) 1))
(LOOP FOR A FROM 0 TO (- (LENGTH '(A B C D)) 1)
COLLECT (LIST (NTH A '(A B C D))))
T
CL-USER> (macroexpand-1 '(txaat '(a b c d) 2))
(LOOP FOR A FROM 0 TO (- (LENGTH '(A B C D)) 2)
APPEND (LOOP FOR B FROM (1+ A) TO (- (LENGTH '(A B C D)) 1)
COLLECT (LIST (NTH A '(A B C D)) (NTH B '(A B C D)))))
T
CL-USER> (macroexpand-1 '(txaat '(a b c d) 3))
(LOOP FOR A FROM 0 TO (- (LENGTH '(A B C D)) 3)
APPEND (LOOP FOR B FROM (1+ A) TO (- (LENGTH '(A B C D)) 2)
APPEND (LOOP FOR C FROM (1+ B) TO (- (LENGTH '(A B C D)) 1)
COLLECT (LIST (NTH A '(A B C D))
(NTH B '(A B C D))
(NTH C '(A B C D))))))
T
CL-USER>
And,
CL-USER> (txaat '(a b c d) 1)
((A) (B) (C) (D))
CL-USER> (txaat '(a b c d) 2)
((A B) (A C) (A D) (B C) (B D) (C D))
CL-USER> (txaat '(a b c d) 3)
((A B C) (A B D) (A C D) (B C D))
CL-USER> (txaat '(a b c d) 4)
((A B C D))
CL-USER> (txaat '(a b c d) 5)
NIL
CL-USER> (txaat '(a b c d) 0)
NIL
CL-USER>
这是我对javascript的贡献(没有递归)
set = ["q0", "q1", "q2", "q3"]
collector = []
function comb(num) {
results = []
one_comb = []
for (i = set.length - 1; i >= 0; --i) {
tmp = Math.pow(2, i)
quotient = parseInt(num / tmp)
results.push(quotient)
num = num % tmp
}
k = 0
for (i = 0; i < results.length; ++i)
if (results[i]) {
++k
one_comb.push(set[i])
}
if (collector[k] == undefined)
collector[k] = []
collector[k].push(one_comb)
}
sum = 0
for (i = 0; i < set.length; ++i)
sum += Math.pow(2, i)
for (ii = sum; ii > 0; --ii)
comb(ii)
cnt = 0
for (i = 1; i < collector.length; ++i) {
n = 0
for (j = 0; j < collector[i].length; ++j)
document.write(++cnt, " - " + (++n) + " - ", collector[i][j], "<br>")
document.write("<hr>")
}
这个答案怎么样……这将打印所有长度为3的组合…它可以推广到任何长度… 工作代码…
#include<iostream>
#include<string>
using namespace std;
void combination(string a,string dest){
int l = dest.length();
if(a.empty() && l == 3 ){
cout<<dest<<endl;}
else{
if(!a.empty() && dest.length() < 3 ){
combination(a.substr(1,a.length()),dest+a[0]);}
if(!a.empty() && dest.length() <= 3 ){
combination(a.substr(1,a.length()),dest);}
}
}
int main(){
string demo("abcd");
combination(demo,"");
return 0;
}