我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

在c#中:

public static IEnumerable<IEnumerable<T>> Combinations<T>(this IEnumerable<T> elements, int k)
{
  return k == 0 ? new[] { new T[0] } :
    elements.SelectMany((e, i) =>
      elements.Skip(i + 1).Combinations(k - 1).Select(c => (new[] {e}).Concat(c)));
}

用法:

var result = Combinations(new[] { 1, 2, 3, 4, 5 }, 3);

结果:

123
124
125
134
135
145
234
235
245
345

其他回答

我的实现在c/c++

#include <unistd.h>
#include <stdio.h>
#include <iconv.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>

int main(int argc, char **argv)
{
    int opt = -1, min_len = 0, max_len = 0;
    char ofile[256], fchar[2], tchar[2];
    ofile[0] = 0;
    fchar[0] = 0;
    tchar[0] = 0;
    while((opt = getopt(argc, argv, "o:f:t:l:L:")) != -1)
    {
            switch(opt)
            {
                    case 'o':
                    strncpy(ofile, optarg, 255);
                    break;
                    case 'f':
                    strncpy(fchar, optarg, 1);
                    break;
                    case 't':
                    strncpy(tchar, optarg, 1);
                    break;
                    case 'l':
                    min_len = atoi(optarg);
                    break;
                    case 'L':
                    max_len = atoi(optarg);
                    break;
                    default:
                    printf("usage: %s -oftlL\n\t-o output file\n\t-f from char\n\t-t to char\n\t-l min seq len\n\t-L max seq len", argv[0]);
            }
    }
if(max_len < 1)
{
    printf("error, length must be more than 0\n");
    return 1;
}
if(min_len > max_len)
{
    printf("error, max length must be greater or equal min_length\n");
    return 1;
}
if((int)fchar[0] > (int)tchar[0])
{
    printf("error, invalid range specified\n");
    return 1;
}
FILE *out = fopen(ofile, "w");
if(!out)
{
    printf("failed to open input file with error: %s\n", strerror(errno));
    return 1;
}
int cur_len = min_len;
while(cur_len <= max_len)
{
    char buf[cur_len];
    for(int i = 0; i < cur_len; i++)
        buf[i] = fchar[0];
    fwrite(buf, cur_len, 1, out);
    fwrite("\n", 1, 1, out);
    while(buf[0] != (tchar[0]+1))
    {
        while(buf[cur_len-1] < tchar[0])
        {
            (int)buf[cur_len-1]++;
            fwrite(buf, cur_len, 1, out);
            fwrite("\n", 1, 1, out);
        }
        if(cur_len < 2)
            break;
        if(buf[0] == tchar[0])
        {
            bool stop = true;
            for(int i = 1; i < cur_len; i++)
            {
                if(buf[i] != tchar[0])
                {
                    stop = false;
                    break;
                }
            }
            if(stop)
                break;
        }
        int u = cur_len-2;
        for(; u>=0 && buf[u] >= tchar[0]; u--)
            ;
        (int)buf[u]++;
        for(int i = u+1; i < cur_len; i++)
            buf[i] = fchar[0];
        fwrite(buf, cur_len, 1, out);
        fwrite("\n", 1, 1, out);
    }
    cur_len++;
}
fclose(out);
return 0;
}

这里我的实现在c++,它写所有的组合到指定的文件,但行为可以改变,我在生成各种字典,它接受最小和最大长度和字符范围,目前只有ANSI支持,它足以满足我的需求

在c++中,以下例程将生成range [first,last)之间的长度距离(first,k)的所有组合:

#include <algorithm>

template <typename Iterator>
bool next_combination(const Iterator first, Iterator k, const Iterator last)
{
   /* Credits: Mark Nelson http://marknelson.us */
   if ((first == last) || (first == k) || (last == k))
      return false;
   Iterator i1 = first;
   Iterator i2 = last;
   ++i1;
   if (last == i1)
      return false;
   i1 = last;
   --i1;
   i1 = k;
   --i2;
   while (first != i1)
   {
      if (*--i1 < *i2)
      {
         Iterator j = k;
         while (!(*i1 < *j)) ++j;
         std::iter_swap(i1,j);
         ++i1;
         ++j;
         i2 = k;
         std::rotate(i1,j,last);
         while (last != j)
         {
            ++j;
            ++i2;
         }
         std::rotate(k,i2,last);
         return true;
      }
   }
   std::rotate(first,k,last);
   return false;
}

它可以这样使用:

#include <string>
#include <iostream>

int main()
{
    std::string s = "12345";
    std::size_t comb_size = 3;
    do
    {
        std::cout << std::string(s.begin(), s.begin() + comb_size) << std::endl;
    } while (next_combination(s.begin(), s.begin() + comb_size, s.end()));

    return 0;
}

这将打印以下内容:

123
124
125
134
135
145
234
235
245
345

下面是我最近用Java写的一段代码,它计算并返回从“outOf”元素中“num”元素的所有组合。

// author: Sourabh Bhat (heySourabh@gmail.com)

public class Testing
{
    public static void main(String[] args)
    {

// Test case num = 5, outOf = 8.

        int num = 5;
        int outOf = 8;
        int[][] combinations = getCombinations(num, outOf);
        for (int i = 0; i < combinations.length; i++)
        {
            for (int j = 0; j < combinations[i].length; j++)
            {
                System.out.print(combinations[i][j] + " ");
            }
            System.out.println();
        }
    }

    private static int[][] getCombinations(int num, int outOf)
    {
        int possibilities = get_nCr(outOf, num);
        int[][] combinations = new int[possibilities][num];
        int arrayPointer = 0;

        int[] counter = new int[num];

        for (int i = 0; i < num; i++)
        {
            counter[i] = i;
        }
        breakLoop: while (true)
        {
            // Initializing part
            for (int i = 1; i < num; i++)
            {
                if (counter[i] >= outOf - (num - 1 - i))
                    counter[i] = counter[i - 1] + 1;
            }

            // Testing part
            for (int i = 0; i < num; i++)
            {
                if (counter[i] < outOf)
                {
                    continue;
                } else
                {
                    break breakLoop;
                }
            }

            // Innermost part
            combinations[arrayPointer] = counter.clone();
            arrayPointer++;

            // Incrementing part
            counter[num - 1]++;
            for (int i = num - 1; i >= 1; i--)
            {
                if (counter[i] >= outOf - (num - 1 - i))
                    counter[i - 1]++;
            }
        }

        return combinations;
    }

    private static int get_nCr(int n, int r)
    {
        if(r > n)
        {
            throw new ArithmeticException("r is greater then n");
        }
        long numerator = 1;
        long denominator = 1;
        for (int i = n; i >= r + 1; i--)
        {
            numerator *= i;
        }
        for (int i = 2; i <= n - r; i++)
        {
            denominator *= i;
        }

        return (int) (numerator / denominator);
    }
}

下面是一个coffeescript实现

combinations: (list, n) ->
        permuations = Math.pow(2, list.length) - 1
        out = []
        combinations = []

        while permuations
            out = []

            for i in [0..list.length]
                y = ( 1 << i )
                if( y & permuations and (y isnt permuations))
                    out.push(list[i])

            if out.length <= n and out.length > 0
                combinations.push(out)

            permuations--

        return combinations 
static IEnumerable<string> Combinations(List<string> characters, int length)
{
    for (int i = 0; i < characters.Count; i++)
    {
        // only want 1 character, just return this one
        if (length == 1)
            yield return characters[i];

        // want more than one character, return this one plus all combinations one shorter
        // only use characters after the current one for the rest of the combinations
        else
            foreach (string next in Combinations(characters.GetRange(i + 1, characters.Count - (i + 1)), length - 1))
                yield return characters[i] + next;
    }
}