我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

在c#中:

public static IEnumerable<IEnumerable<T>> Combinations<T>(this IEnumerable<T> elements, int k)
{
  return k == 0 ? new[] { new T[0] } :
    elements.SelectMany((e, i) =>
      elements.Skip(i + 1).Combinations(k - 1).Select(c => (new[] {e}).Concat(c)));
}

用法:

var result = Combinations(new[] { 1, 2, 3, 4, 5 }, 3);

结果:

123
124
125
134
135
145
234
235
245
345

其他回答

最近在IronScripter网站上有一个PowerShell挑战,需要一个n- choice -k的解决方案。我在那里发布了一个解决方案,但这里有一个更通用的版本。

AllK开关用于控制输出是长度为ChooseK的组合,还是长度为1到ChooseK的组合。 Prefix参数实际上是输出字符串的累加器,但其效果是为初始调用传递的值实际上会为每一行输出添加前缀。

function Get-NChooseK
{

    [CmdletBinding()]

    Param
    (

        [String[]]
        $ArrayN

    ,   [Int]
        $ChooseK

    ,   [Switch]
        $AllK

    ,   [String]
        $Prefix = ''

    )

    PROCESS
    {
        # Validate the inputs
        $ArrayN = $ArrayN | Sort-Object -Unique

        If ($ChooseK -gt $ArrayN.Length)
        {
            Write-Error "Can't choose $ChooseK items when only $($ArrayN.Length) are available." -ErrorAction Stop
        }

        # Control the output
        $firstK = If ($AllK) { 1 } Else { $ChooseK }

        # Get combinations
        $firstK..$ChooseK | ForEach-Object {

            $thisK = $_

            $ArrayN[0..($ArrayN.Length-($thisK--))] | ForEach-Object {
                If ($thisK -eq 0)
                {
                    Write-Output ($Prefix+$_)
                }
                Else
                {
                    Get-NChooseK -Array ($ArrayN[($ArrayN.IndexOf($_)+1)..($ArrayN.Length-1)]) -Choose $thisK -AllK:$false -Prefix ($Prefix+$_)
                }
            }

        }
    }

}

例如:

PS C:\>$ArrayN  = 'E','B','C','A','D'
PS C:\>$ChooseK = 3
PS C:\>Get-NChooseK -ArrayN $ArrayN -ChooseK $ChooseK
ABC
ABD
ABE
ACD
ACE
ADE
BCD
BCE
BDE
CDE

PowerShell解决方案:

function Get-NChooseK
{
    <#
    .SYNOPSIS
    Returns all the possible combinations by choosing K items at a time from N possible items.

    .DESCRIPTION
    Returns all the possible combinations by choosing K items at a time from N possible items.
    The combinations returned do not consider the order of items as important i.e. 123 is considered to be the same combination as 231, etc.

    .PARAMETER ArrayN
    The array of items to choose from.

    .PARAMETER ChooseK
    The number of items to choose.

    .PARAMETER AllK
    Includes combinations for all lesser values of K above zero i.e. 1 to K.

    .PARAMETER Prefix
    String that will prefix each line of the output.

    .EXAMPLE
    PS C:\> Get-NChooseK -ArrayN '1','2','3' -ChooseK 3
    123

    .EXAMPLE
    PS C:\> Get-NChooseK -ArrayN '1','2','3' -ChooseK 3 -AllK
    1
    2
    3
    12
    13
    23
    123

    .EXAMPLE
    PS C:\> Get-NChooseK -ArrayN '1','2','3' -ChooseK 2 -Prefix 'Combo: '
    Combo: 12
    Combo: 13
    Combo: 23

    .NOTES
    Author : nmbell
    #>

    # Use cmdlet binding
    [CmdletBinding()]

    # Declare parameters
    Param
    (

        [String[]]
        $ArrayN

    ,   [Int]
        $ChooseK

    ,   [Switch]
        $AllK

    ,   [String]
        $Prefix = ''

    )

    BEGIN
    {
    }

    PROCESS
    {
        # Validate the inputs
        $ArrayN = $ArrayN | Sort-Object -Unique

        If ($ChooseK -gt $ArrayN.Length)
        {
            Write-Error "Can't choose $ChooseK items when only $($ArrayN.Length) are available." -ErrorAction Stop
        }

        # Control the output
        $firstK = If ($AllK) { 1 } Else { $ChooseK }

        # Get combinations
        $firstK..$ChooseK | ForEach-Object {

            $thisK = $_

            $ArrayN[0..($ArrayN.Length-($thisK--))] | ForEach-Object {
                If ($thisK -eq 0)
                {
                    Write-Output ($Prefix+$_)
                }
                Else
                {
                    Get-NChooseK -Array ($ArrayN[($ArrayN.IndexOf($_)+1)..($ArrayN.Length-1)]) -Choose $thisK -AllK:$false -Prefix ($Prefix+$_)
                }
            }

        }
    }

    END
    {
    }

}

例如:

PS C:\>Get-NChooseK -ArrayN 'A','B','C','D','E' -ChooseK 3
ABC
ABD
ABE
ACD
ACE
ADE
BCD
BCE
BDE
CDE

最近在IronScripter网站上发布了一个类似于这个问题的挑战,在那里你可以找到我的链接和其他一些解决方案。

你可以使用Asif算法来生成所有可能的组合。这可能是最简单和最有效的方法。你可以在这里查看媒体文章。

让我们看看JavaScript中的实现。

function Combinations( arr, r ) {
    // To avoid object referencing, cloning the array.
    arr = arr && arr.slice() || [];

    var len = arr.length;

    if( !len || r > len || !r )
        return [ [] ];
    else if( r === len ) 
        return [ arr ];

    if( r === len ) return arr.reduce( ( x, v ) => {
        x.push( [ v ] );

        return x;
    }, [] );

    var head = arr.shift();

    return Combinations( arr, r - 1 ).map( x => {
        x.unshift( head );

        return x;
    } ).concat( Combinations( arr, r ) );
}

// Now do your stuff.

console.log( Combinations( [ 'a', 'b', 'c', 'd', 'e' ], 3 ) );
void combine(char a[], int N, int M, int m, int start, char result[]) {
    if (0 == m) {
        for (int i = M - 1; i >= 0; i--)
            std::cout << result[i];
        std::cout << std::endl;
        return;
    }
    for (int i = start; i < (N - m + 1); i++) {
        result[m - 1] = a[i];
        combine(a, N, M, m-1, i+1, result);
    }
}

void combine(char a[], int N, int M) {
    char *result = new char[M];
    combine(a, N, M, M, 0, result);
    delete[] result;
}

在第一个函数中,m表示还需要选择多少个,start表示必须从数组中的哪个位置开始选择。

这是我想出的解决这个问题的算法。它是用c++编写的,但是可以适应几乎任何支持位操作的语言。

void r_nCr(const unsigned int &startNum, const unsigned int &bitVal, const unsigned int &testNum) // Should be called with arguments (2^r)-1, 2^(r-1), 2^(n-1)
{
    unsigned int n = (startNum - bitVal) << 1;
    n += bitVal ? 1 : 0;

    for (unsigned int i = log2(testNum) + 1; i > 0; i--) // Prints combination as a series of 1s and 0s
        cout << (n >> (i - 1) & 1);
    cout << endl;

    if (!(n & testNum) && n != startNum)
        r_nCr(n, bitVal, testNum);

    if (bitVal && bitVal < testNum)
        r_nCr(startNum, bitVal >> 1, testNum);
}

你可以在这里看到它如何工作的解释。