我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

在c#中:

public static IEnumerable<IEnumerable<T>> Combinations<T>(this IEnumerable<T> elements, int k)
{
  return k == 0 ? new[] { new T[0] } :
    elements.SelectMany((e, i) =>
      elements.Skip(i + 1).Combinations(k - 1).Select(c => (new[] {e}).Concat(c)));
}

用法:

var result = Combinations(new[] { 1, 2, 3, 4, 5 }, 3);

结果:

123
124
125
134
135
145
234
235
245
345

其他回答

我可以给出这个问题的递归Python解决方案吗?

def choose_iter(elements, length):
    for i in xrange(len(elements)):
        if length == 1:
            yield (elements[i],)
        else:
            for next in choose_iter(elements[i+1:], length-1):
                yield (elements[i],) + next
def choose(l, k):
    return list(choose_iter(l, k))

使用示例:

>>> len(list(choose_iter("abcdefgh",3)))
56

我喜欢它的简洁。

简单但缓慢的c++回溯算法。

#include <iostream>

void backtrack(int* numbers, int n, int k, int i, int s)
{
    if (i == k)
    {
        for (int j = 0; j < k; ++j)
        {
            std::cout << numbers[j];
        }
        std::cout << std::endl;

        return;
    }

    if (s > n)
    {
        return;
    }

    numbers[i] = s;
    backtrack(numbers, n, k, i + 1, s + 1);
    backtrack(numbers, n, k, i, s + 1);
}

int main(int argc, char* argv[])
{
    int n = 5;
    int k = 3;

    int* numbers = new int[k];

    backtrack(numbers, n, k, 0, 1);

    delete[] numbers;

    return 0;
}

Haskell中的简单递归算法

import Data.List

combinations 0 lst = [[]]
combinations n lst = do
    (x:xs) <- tails lst
    rest   <- combinations (n-1) xs
    return $ x : rest

我们首先定义特殊情况,即选择零元素。它产生一个单一的结果,这是一个空列表(即一个包含空列表的列表)。

对于n> 0, x遍历列表中的每一个元素xs是x之后的每一个元素。

Rest通过对组合的递归调用从xs中选取n - 1个元素。该函数的最终结果是一个列表,其中每个元素都是x: rest(即对于x和rest的每个不同值,x为头部,rest为尾部的列表)。

> combinations 3 "abcde"
["abc","abd","abe","acd","ace","ade","bcd","bce","bde","cde"]

当然,由于Haskell是懒惰的,列表是根据需要逐渐生成的,因此您可以部分计算指数级的大组合。

> let c = combinations 8 "abcdefghijklmnopqrstuvwxyz"
> take 10 c
["abcdefgh","abcdefgi","abcdefgj","abcdefgk","abcdefgl","abcdefgm","abcdefgn",
 "abcdefgo","abcdefgp","abcdefgq"]

我已经编写了一个类来处理处理二项式系数的常见函数,这是您的问题属于的问题类型。它执行以下任务:

Outputs all the K-indexes in a nice format for any N choose K to a file. The K-indexes can be substituted with more descriptive strings or letters. This method makes solving this type of problem quite trivial. Converts the K-indexes to the proper index of an entry in the sorted binomial coefficient table. This technique is much faster than older published techniques that rely on iteration. It does this by using a mathematical property inherent in Pascal's Triangle. My paper talks about this. I believe I am the first to discover and publish this technique, but I could be wrong. Converts the index in a sorted binomial coefficient table to the corresponding K-indexes. Uses Mark Dominus method to calculate the binomial coefficient, which is much less likely to overflow and works with larger numbers. The class is written in .NET C# and provides a way to manage the objects related to the problem (if any) by using a generic list. The constructor of this class takes a bool value called InitTable that when true will create a generic list to hold the objects to be managed. If this value is false, then it will not create the table. The table does not need to be created in order to perform the 4 above methods. Accessor methods are provided to access the table. There is an associated test class which shows how to use the class and its methods. It has been extensively tested with 2 cases and there are no known bugs.

要了解这个类并下载代码,请参见将二项式系数表化。

将这个类转换为c++应该不难。

《计算机编程艺术,卷4A:组合算法,第1部分》第7.2.1.3节中算法L(字典组合)的C代码:

#include <stdio.h>
#include <stdlib.h>

void visit(int* c, int t) 
{
  // for (int j = 1; j <= t; j++)
  for (int j = t; j > 0; j--)
    printf("%d ", c[j]);
  printf("\n");
}

int* initialize(int n, int t) 
{
  // c[0] not used
  int *c = (int*) malloc((t + 3) * sizeof(int));

  for (int j = 1; j <= t; j++)
    c[j] = j - 1;
  c[t+1] = n;
  c[t+2] = 0;
  return c;
}

void comb(int n, int t) 
{
  int *c = initialize(n, t);
  int j;

  for (;;) {
    visit(c, t);
    j = 1;
    while (c[j]+1 == c[j+1]) {
      c[j] = j - 1;
      ++j;
    }
    if (j > t) 
      return;
    ++c[j];
  }
  free(c);
}

int main(int argc, char *argv[])
{
  comb(5, 3);
  return 0;
}