我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

赶时髦,发布另一个解决方案。这是一个通用的Java实现。输入:(int k)是要选择的元素数量,(List<T> List)是要选择的列表。返回一个组合列表(list < list <T>>)。

public static <T> List<List<T>> getCombinations(int k, List<T> list) {
    List<List<T>> combinations = new ArrayList<List<T>>();
    if (k == 0) {
        combinations.add(new ArrayList<T>());
        return combinations;
    }
    for (int i = 0; i < list.size(); i++) {
        T element = list.get(i);
        List<T> rest = getSublist(list, i+1);
        for (List<T> previous : getCombinations(k-1, rest)) {
            previous.add(element);
            combinations.add(previous);
        }
    }
    return combinations;
}

public static <T> List<T> getSublist(List<T> list, int i) {
    List<T> sublist = new ArrayList<T>();
    for (int j = i; j < list.size(); j++) {
        sublist.add(list.get(j));
    }
    return sublist;
}

其他回答

下面是一个方法,它从一个随机长度的字符串中给出指定大小的所有组合。类似于昆玛斯的解,但适用于不同的输入和k。

代码可以更改为换行,即'dab'从输入'abcd' w k=3。

public void run(String data, int howMany){
    choose(data, howMany, new StringBuffer(), 0);
}


//n choose k
private void choose(String data, int k, StringBuffer result, int startIndex){
    if (result.length()==k){
        System.out.println(result.toString());
        return;
    }

    for (int i=startIndex; i<data.length(); i++){
        result.append(data.charAt(i));
        choose(data,k,result, i+1);
        result.setLength(result.length()-1);
    }
}

"abcde"的输出:

ABC abd ace ade BCD bce bde cde

另一个具有组合索引惰性生成的c#版本。这个版本维护了一个索引数组来定义所有值列表和当前组合值之间的映射,即在整个运行时不断使用O(k)额外的空间。该代码在O(k)时间内生成单个组合,包括第一个组合。

public static IEnumerable<T[]> Combinations<T>(this T[] values, int k)
{
    if (k < 0 || values.Length < k)
        yield break; // invalid parameters, no combinations possible

    // generate the initial combination indices
    var combIndices = new int[k];
    for (var i = 0; i < k; i++)
    {
        combIndices[i] = i;
    }

    while (true)
    {
        // return next combination
        var combination = new T[k];
        for (var i = 0; i < k; i++)
        {
            combination[i] = values[combIndices[i]];
        }
        yield return combination;

        // find first index to update
        var indexToUpdate = k - 1;
        while (indexToUpdate >= 0 && combIndices[indexToUpdate] >= values.Length - k + indexToUpdate)
        {
            indexToUpdate--;
        }

        if (indexToUpdate < 0)
            yield break; // done

        // update combination indices
        for (var combIndex = combIndices[indexToUpdate] + 1; indexToUpdate < k; indexToUpdate++, combIndex++)
        {
            combIndices[indexToUpdate] = combIndex;
        }
    }
}

测试代码:

foreach (var combination in new[] {'a', 'b', 'c', 'd', 'e'}.Combinations(3))
{
    System.Console.WriteLine(String.Join(" ", combination));
}

输出:

a b c
a b d
a b e
a c d
a c e
a d e
b c d
b c e
b d e
c d e

我已经编写了一个类来处理处理二项式系数的常见函数,这是您的问题属于的问题类型。它执行以下任务:

Outputs all the K-indexes in a nice format for any N choose K to a file. The K-indexes can be substituted with more descriptive strings or letters. This method makes solving this type of problem quite trivial. Converts the K-indexes to the proper index of an entry in the sorted binomial coefficient table. This technique is much faster than older published techniques that rely on iteration. It does this by using a mathematical property inherent in Pascal's Triangle. My paper talks about this. I believe I am the first to discover and publish this technique, but I could be wrong. Converts the index in a sorted binomial coefficient table to the corresponding K-indexes. Uses Mark Dominus method to calculate the binomial coefficient, which is much less likely to overflow and works with larger numbers. The class is written in .NET C# and provides a way to manage the objects related to the problem (if any) by using a generic list. The constructor of this class takes a bool value called InitTable that when true will create a generic list to hold the objects to be managed. If this value is false, then it will not create the table. The table does not need to be created in order to perform the 4 above methods. Accessor methods are provided to access the table. There is an associated test class which shows how to use the class and its methods. It has been extensively tested with 2 cases and there are no known bugs.

要了解这个类并下载代码,请参见将二项式系数表化。

将这个类转换为c++应该不难。

还有另一个递归解决方案(你应该能够使用字母而不是数字)使用堆栈,虽然比大多数更短:

stack = [] 
def choose(n,x):
   r(0,0,n+1,x)

def r(p, c, n,x):
   if x-c == 0:
      print stack
      return

   for i in range(p, n-(x-1)+c):
      stack.append(i)
      r(i+1,c+1,n,x)
      stack.pop()

4选3或者我想要从0到4的所有3种数字组合

choose(4,3) 

[0, 1, 2]
[0, 1, 3]
[0, 1, 4]
[0, 2, 3]
[0, 2, 4]
[0, 3, 4]
[1, 2, 3]
[1, 2, 4]
[1, 3, 4]
[2, 3, 4]

我有一个用于project euler的排列算法,用python编写:

def missing(miss,src):
    "Returns the list of items in src not present in miss"
    return [i for i in src if i not in miss]


def permutation_gen(n,l):
    "Generates all the permutations of n items of the l list"
    for i in l:
        if n<=1: yield [i]
        r = [i]
        for j in permutation_gen(n-1,missing([i],l)):  yield r+j

If

n<len(l) 

你应该有所有你需要的组合,没有重复,你需要吗?

它是一个生成器,所以你可以这样使用它:

for comb in permutation_gen(3,list("ABCDEFGH")):
    print comb