我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

《计算机编程艺术,卷4A:组合算法,第1部分》第7.2.1.3节中算法L(字典组合)的C代码:

#include <stdio.h>
#include <stdlib.h>

void visit(int* c, int t) 
{
  // for (int j = 1; j <= t; j++)
  for (int j = t; j > 0; j--)
    printf("%d ", c[j]);
  printf("\n");
}

int* initialize(int n, int t) 
{
  // c[0] not used
  int *c = (int*) malloc((t + 3) * sizeof(int));

  for (int j = 1; j <= t; j++)
    c[j] = j - 1;
  c[t+1] = n;
  c[t+2] = 0;
  return c;
}

void comb(int n, int t) 
{
  int *c = initialize(n, t);
  int j;

  for (;;) {
    visit(c, t);
    j = 1;
    while (c[j]+1 == c[j+1]) {
      c[j] = j - 1;
      ++j;
    }
    if (j > t) 
      return;
    ++c[j];
  }
  free(c);
}

int main(int argc, char *argv[])
{
  comb(5, 3);
  return 0;
}

其他回答

简短快速的c#实现

public static IEnumerable<IEnumerable<T>> Combinations<T>(IEnumerable<T> elements, int k)
{
    return Combinations(elements.Count(), k).Select(p => p.Select(q => elements.ElementAt(q)));                
}      

public static List<int[]> Combinations(int setLenght, int subSetLenght) //5, 3
{
    var result = new List<int[]>();

    var lastIndex = subSetLenght - 1;
    var dif = setLenght - subSetLenght;
    var prevSubSet = new int[subSetLenght];
    var lastSubSet = new int[subSetLenght];
    for (int i = 0; i < subSetLenght; i++)
    {
        prevSubSet[i] = i;
        lastSubSet[i] = i + dif;
    }

    while(true)
    {
        //add subSet ad result set
        var n = new int[subSetLenght];
        for (int i = 0; i < subSetLenght; i++)
            n[i] = prevSubSet[i];

        result.Add(n);

        if (prevSubSet[0] >= lastSubSet[0])
            break;

        //start at index 1 because index 0 is checked and breaking in the current loop
        int j = 1;
        for (; j < subSetLenght; j++)
        {
            if (prevSubSet[j] >= lastSubSet[j])
            {
                prevSubSet[j - 1]++;

                for (int p = j; p < subSetLenght; p++)
                    prevSubSet[p] = prevSubSet[p - 1] + 1;

                break;
            }
        }

        if (j > lastIndex)
            prevSubSet[lastIndex]++;
    }

    return result;
}

在VB。Net,该算法从一组数字(PoolArray)中收集n个数字的所有组合。例如,从“8,10,20,33,41,44,47”中选择5个选项的所有组合。

Sub CreateAllCombinationsOfPicksFromPool(ByVal PicksArray() As UInteger, ByVal PicksIndex As UInteger, ByVal PoolArray() As UInteger, ByVal PoolIndex As UInteger)
    If PicksIndex < PicksArray.Length Then
        For i As Integer = PoolIndex To PoolArray.Length - PicksArray.Length + PicksIndex
            PicksArray(PicksIndex) = PoolArray(i)
            CreateAllCombinationsOfPicksFromPool(PicksArray, PicksIndex + 1, PoolArray, i + 1)
        Next
    Else
        ' completed combination. build your collections using PicksArray.
    End If
End Sub

        Dim PoolArray() As UInteger = Array.ConvertAll("8,10,20,33,41,44,47".Split(","), Function(u) UInteger.Parse(u))
        Dim nPicks as UInteger = 5
        Dim Picks(nPicks - 1) As UInteger
        CreateAllCombinationsOfPicksFromPool(Picks, 0, PoolArray, 0)

如果你可以使用SQL语法——比如,如果你使用LINQ访问一个结构或数组的字段,或者直接访问一个数据库,其中有一个名为“Alphabet”的表,只有一个字符字段“Letter”,你可以适应以下代码:

SELECT A.Letter, B.Letter, C.Letter
FROM Alphabet AS A, Alphabet AS B, Alphabet AS C
WHERE A.Letter<>B.Letter AND A.Letter<>C.Letter AND B.Letter<>C.Letter
AND A.Letter<B.Letter AND B.Letter<C.Letter

这将返回所有3个字母的组合,不管你在表格“字母表”中有多少个字母(它可以是3,8,10,27等)。

如果你想要的是所有的排列,而不是组合(也就是说,你想要“ACB”和“ABC”被视为不同的,而不是只出现一次),只需删除最后一行(and一行),就完成了。

Post-Edit:重新阅读问题后,我意识到需要的是通用算法,而不仅仅是选择3个项目的特定算法。Adam Hughes的答案是完整的,不幸的是我还不能投票。这个答案很简单,但只适用于你想要三样东西的时候。

我发现这个线程很有用,我想我会添加一个Javascript解决方案,你可以弹出到Firebug。取决于你的JS引擎,如果起始字符串很大,可能会花一点时间。

function string_recurse(active, rest) {
    if (rest.length == 0) {
        console.log(active);
    } else {
        string_recurse(active + rest.charAt(0), rest.substring(1, rest.length));
        string_recurse(active, rest.substring(1, rest.length));
    }
}
string_recurse("", "abc");

输出如下:

abc
ab
ac
a
bc
b
c

现在又出现了祖辈COBOL,一种饱受诟病的语言。

让我们假设一个包含34个元素的数组,每个元素8个字节(完全是任意选择)。其思想是枚举所有可能的4元素组合,并将它们加载到一个数组中。

我们使用4个指标,每个指标代表4个组中的每个位置

数组是这样处理的:

    idx1 = 1
    idx2 = 2
    idx3 = 3
    idx4 = 4

我们把idx4从4变到最后。对于每个idx4,我们得到一个唯一的组合 四人一组。当idx4到达数组的末尾时,我们将idx3增加1,并将idx4设置为idx3+1。然后再次运行idx4到最后。我们以这种方式继续,分别增加idx3、idx2和idx1,直到idx1的位置距离数组末端小于4。算法就完成了。

1          --- pos.1
2          --- pos 2
3          --- pos 3
4          --- pos 4
5
6
7
etc.

第一次迭代:

1234
1235
1236
1237
1245
1246
1247
1256
1257
1267
etc.

一个COBOL的例子:

01  DATA_ARAY.
    05  FILLER     PIC X(8)    VALUE  "VALUE_01".
    05  FILLER     PIC X(8)    VALUE  "VALUE_02".
  etc.
01  ARAY_DATA    OCCURS 34.
    05  ARAY_ITEM       PIC X(8).

01  OUTPUT_ARAY   OCCURS  50000   PIC X(32).

01   MAX_NUM   PIC 99 COMP VALUE 34.

01  INDEXXES  COMP.
    05  IDX1            PIC 99.
    05  IDX2            PIC 99.
    05  IDX3            PIC 99.
    05  IDX4            PIC 99.
    05  OUT_IDX   PIC 9(9).

01  WHERE_TO_STOP_SEARCH          PIC 99  COMP.

* Stop the search when IDX1 is on the third last array element:

COMPUTE WHERE_TO_STOP_SEARCH = MAX_VALUE - 3     

MOVE 1 TO IDX1

PERFORM UNTIL IDX1 > WHERE_TO_STOP_SEARCH
   COMPUTE IDX2 = IDX1 + 1
   PERFORM UNTIL IDX2 > MAX_NUM
      COMPUTE IDX3 = IDX2 + 1
      PERFORM UNTIL IDX3 > MAX_NUM
         COMPUTE IDX4 = IDX3 + 1
         PERFORM UNTIL IDX4 > MAX_NUM
            ADD 1 TO OUT_IDX
            STRING  ARAY_ITEM(IDX1)
                    ARAY_ITEM(IDX2)
                    ARAY_ITEM(IDX3)
                    ARAY_ITEM(IDX4)
                    INTO OUTPUT_ARAY(OUT_IDX)
            ADD 1 TO IDX4
         END-PERFORM
         ADD 1 TO IDX3
      END-PERFORM
      ADD 1 TO IDX2
   END_PERFORM
   ADD 1 TO IDX1
END-PERFORM.