有没有像isiterable这样的方法?到目前为止,我找到的唯一解决办法就是打电话
hasattr(myObj, '__iter__')
但我不确定这是否万无一失。
有没有像isiterable这样的方法?到目前为止,我找到的唯一解决办法就是打电话
hasattr(myObj, '__iter__')
但我不确定这是否万无一失。
检查__iter__适用于序列类型,但在Python 2中检查字符串会失败。我也想知道正确的答案,在那之前,这里有一种可能性(这也适用于字符串): 试一试: Some_object_iterator = iter(some_object) except TypeError as te: 打印(some_object, 'is not iterable')
内置iter检查__iter__方法,如果是字符串,则检查__getitem__方法。
另一种通用的python方法是假设一个可迭代对象,如果它在给定对象上不起作用,则会优雅地失败。Python术语表:
python编程风格,通过检查对象的方法或属性签名来确定对象的类型,而不是通过与某些类型对象的显式关系(“如果它看起来像鸭子,并且嘎嘎叫得像鸭子,那么它一定是鸭子。”)通过强调接口而不是特定的类型,设计良好的代码通过允许多态替换来提高其灵活性。duck类型避免使用type()或isinstance()进行测试。相反,它通常采用EAFP(请求原谅比请求许可更容易)风格的编程。
...
试一试: _ = (e代表my_object中的e) 除了TypeError: 打印my_object, 'is not iterable'
collections模块提供了一些抽象基类,允许询问类或实例是否提供特定的功能,例如: 从集合。abc import Iterable if isinstance(e, Iterable): # e是可迭代的
但是,这不会检查通过__getitem__可迭代的类。
这是不够的:__iter__返回的对象必须实现迭代协议(即next方法)。请参阅文档中的相关部分。
在Python中,一个好的实践是“尝试并查看”而不是“检查”。
你可以试试这个:
def iterable(a):
try:
(x for x in a)
return True
except TypeError:
return False
如果我们可以创建一个迭代它的生成器(但从不使用生成器,以免占用空间),那么它就是可迭代的。听起来像是"废话"一类的事。为什么首先需要确定一个变量是否可迭代?
try:
#treat object as iterable
except TypeError, e:
#object is not actually iterable
不要检查你的鸭子是否真的是一只鸭子,看看它是否可迭代,就像它是可迭代的一样对待它,如果不是就抱怨。
Duck typing
try:
iterator = iter(the_element)
except TypeError:
# not iterable
else:
# iterable
# for obj in iterator:
# pass
类型检查
使用抽象基类。它们至少需要Python 2.6,并且只适用于新样式的类。
from collections.abc import Iterable # import directly from collections for Python < 3.3
if isinstance(the_element, Iterable):
# iterable
else:
# not iterable
然而,iter()更可靠一些,如文档所述:
检查isinstance(obj, Iterable)检测类 注册为Iterable或具有__iter__()方法,但是 它不会检测使用__getitem__()迭代的类 方法。唯一可靠的方法来确定一个对象是否 Is iterable调用iter(obj)。
我在这里找到了一个很好的解决方案:
isiterable = lambda obj: isinstance(obj, basestring) \
or getattr(obj, '__iter__', False)
在Python <= 2.5中,你不能也不应该——iterable是一个“非正式的”接口。
但是从Python 2.6和3.0开始,你可以利用新的ABC(抽象基类)基础设施以及一些内置的ABC,这些ABC在collections模块中可用:
from collections import Iterable
class MyObject(object):
pass
mo = MyObject()
print isinstance(mo, Iterable)
Iterable.register(MyObject)
print isinstance(mo, Iterable)
print isinstance("abc", Iterable)
现在,这是否可取,或者是否有效,只是一个惯例的问题。正如你所看到的,你可以将一个不可迭代的对象注册为Iterable——它将在运行时引发一个异常。因此,isinstance获得了一个“新的”含义——它只是检查“声明的”类型兼容性,这在Python中是一个很好的方法。
另一方面,如果你的对象不能满足你所需要的接口,你会怎么做?举个例子:
from collections import Iterable
from traceback import print_exc
def check_and_raise(x):
if not isinstance(x, Iterable):
raise TypeError, "%s is not iterable" % x
else:
for i in x:
print i
def just_iter(x):
for i in x:
print i
class NotIterable(object):
pass
if __name__ == "__main__":
try:
check_and_raise(5)
except:
print_exc()
print
try:
just_iter(5)
except:
print_exc()
print
try:
Iterable.register(NotIterable)
ni = NotIterable()
check_and_raise(ni)
except:
print_exc()
print
如果对象不满足您的期望,则抛出TypeError,但如果已经注册了正确的ABC,则检查将毫无用处。相反,如果__iter__方法可用,Python将自动识别该类的object为Iterable。
如果你只是期望一个可迭代对象,遍历它,然后忘记它。另一方面,如果您需要根据输入类型执行不同的操作,那么您可能会发现ABC基础结构非常有用。
到目前为止,我找到的最佳解决方案是:
Hasattr(obj, '__contains__')
它主要检查对象是否实现了in操作符。
优点(其他解决方案都不具备这三个优点):
它是一个表达式(工作为lambda,而不是try…变体除外) 它(应该)由所有可迭代对象实现,包括字符串(而不是__iter__) 适用于任何Python >= 2.5
注:
Python的“请求原谅,而不是允许”的哲学在例如,在一个列表中,你有可迭代对象和不可迭代对象,你需要根据它的类型区别对待每个元素(在try上处理可迭代对象,在except上处理不可迭代对象可以工作,但它看起来很丑,会误导人)时,就不会很好地工作了。 对于这个问题的解决方案,试图实际遍历对象(例如[x for x in obj])来检查它是否为可迭代对象,可能会导致对大型可迭代对象的显著性能损失(特别是如果你只需要可迭代对象的前几个元素,例如),应该避免
根据Python 2术语表,可迭代对象是
所有序列类型(如list、str和tuple)和一些非序列类型(如dict和file)以及使用__iter__()或__getitem__()方法定义的任何类的对象。可迭代对象可用于for循环和许多其他需要序列的地方(zip(), map(),…)。当一个可迭代对象作为参数传递给内置函数iter()时,它将返回该对象的迭代器。
当然,考虑到Python的一般编码风格,基于“请求原谅比请求许可更容易”这一事实。,一般的期望是使用
try:
for i in object_in_question:
do_something
except TypeError:
do_something_for_non_iterable
但如果你需要显式检查它,你可以通过hasattr(object_in_question, "__iter__")或hasattr(object_in_question, "__getitem__")来测试可迭代对象。你需要检查两者,因为strs没有__iter__方法(至少在Python 2中没有,在Python 3中有),而且生成器对象没有__getitem__方法。
在我的脚本中,我经常发现定义一个可迭代函数很方便。 (现在合并了Alfe建议的简化):
import collections
def iterable(obj):
return isinstance(obj, collections.Iterable):
因此,您可以测试任何对象是否具有非常可读的可迭代形式
if iterable(obj):
# act on iterable
else:
# not iterable
就像你对可调用函数所做的那样
编辑:如果你安装了numpy,你可以简单地做: 简单地说是什么
def iterable(obj):
try: iter(obj)
except: return False
return True
如果没有numpy,可以简单地实现这段代码或上面的代码。
考虑到Python的duck类型,最简单的方法是捕捉错误(Python完全知道它期望从一个对象变成迭代器):
class A(object):
def __getitem__(self, item):
return something
class B(object):
def __iter__(self):
# Return a compliant iterator. Just an example
return iter([])
class C(object):
def __iter__(self):
# Return crap
return 1
class D(object): pass
def iterable(obj):
try:
iter(obj)
return True
except:
return False
assert iterable(A())
assert iterable(B())
assert iterable(C())
assert not iterable(D())
注:
如果异常类型相同,则区分对象是否不可迭代或已经实现了有bug的__iter__是无关紧要的:无论如何,您将无法迭代对象。 我想我理解你的担忧:如果我也可以依赖鸭类型来引发AttributeError,如果__call__没有为我的对象定义,那么callable如何作为检查存在,但这不是可迭代检查的情况? 我不知道答案,但你可以实现我(和其他用户)给出的函数,或者只是在你的代码中捕获异常(你在那部分的实现将像我写的函数一样——只要确保你将迭代器的创建与其余代码隔离开来,这样你就可以捕获异常并将其与另一个TypeError区分开来。
def is_iterable(x):
try:
0 in x
except TypeError:
return False
else:
return True
这将对所有可迭代对象说“是”,但对Python 2中的字符串说“不”。(例如,当递归函数可以接受字符串或字符串容器时,这就是我想要的。在这种情况下,请求原谅可能会导致模糊代码,最好先征求允许。)
import numpy
class Yes:
def __iter__(self):
yield 1;
yield 2;
yield 3;
class No:
pass
class Nope:
def __iter__(self):
return 'nonsense'
assert is_iterable(Yes())
assert is_iterable(range(3))
assert is_iterable((1,2,3)) # tuple
assert is_iterable([1,2,3]) # list
assert is_iterable({1,2,3}) # set
assert is_iterable({1:'one', 2:'two', 3:'three'}) # dictionary
assert is_iterable(numpy.array([1,2,3]))
assert is_iterable(bytearray("not really a string", 'utf-8'))
assert not is_iterable(No())
assert not is_iterable(Nope())
assert not is_iterable("string")
assert not is_iterable(42)
assert not is_iterable(True)
assert not is_iterable(None)
这里有许多其他策略会对字符串说“是”。如果你想的话就用吧。
import collections
import numpy
assert isinstance("string", collections.Iterable)
assert isinstance("string", collections.Sequence)
assert numpy.iterable("string")
assert iter("string")
assert hasattr("string", '__getitem__')
注意:is_iterable()会对bytes和bytearray类型的字符串说yes。
Python 3中的bytes对象是可迭代的True == is_iterable(b"string") == is_iterable("string".encode('utf-8')) Python 2和3中的bytearray对象是可迭代的True == is_iterable(bytearray(b"abc"))
O.P. hasattr(x, '__iter__')方法将对Python 3中的字符串说“是”,而在Python 2中对字符串说“否”(无论“或b”或u”)。感谢@LuisMasuelli注意到它也会让你在一个bug __iter__。
我想多讲一点iter, __iter__和__getitem__的相互作用,以及幕后发生的事情。有了这些知识,你就能明白为什么你能做到最好
try:
iter(maybe_iterable)
print('iteration will probably work')
except TypeError:
print('not iterable')
我将首先列出事实,然后快速提醒您在python中使用for循环时会发生什么,然后进行讨论以说明事实。
事实
通过调用iter(o)可以从任何对象o中获得迭代器,前提是至少满足以下条件之一:a) o具有__iter__方法,该方法返回一个迭代器对象。迭代器是任何具有__iter__和__next__ (Python 2: next)方法的对象。B) o有__getitem__方法。 对象的实例,或者对象的实例 属性__iter__是不够的。 如果对象o只实现__getitem__,而不实现__iter__,则会构造iter(o) 一个迭代器,试图通过整数索引从o中获取项目,从索引0开始。迭代器将捕获所引发的任何IndexError(但没有其他错误),然后引发StopIteration本身。 在最一般的意义上,没有办法检查iter返回的迭代器是否正常,只能尝试它。 如果对象o实现了__iter__,则iter函数将确保 __iter__返回的对象是一个迭代器。没有健康检查 如果一个对象只实现__getitem__。 __iter__获胜。如果对象o同时实现了__iter__和__getitem__,则iter(o)将调用__iter__。 如果你想让你自己的对象可迭代,总是实现__iter__方法。
for循环
为了继续学习,您需要了解在Python中使用for循环时会发生什么。如果你已经知道了,可以直接跳到下一节。
当你将for item in o用于某个可迭代对象o时,Python调用iter(o)并期望将一个迭代器对象作为返回值。迭代器是任何实现__next__(或Python 2中的next)方法和__iter__方法的对象。
按照惯例,迭代器的__iter__方法应该返回对象本身(即返回self)。然后Python在迭代器上调用next,直到引发StopIteration。所有这些都是隐式发生的,但下面的演示使其可见:
import random
class DemoIterable(object):
def __iter__(self):
print('__iter__ called')
return DemoIterator()
class DemoIterator(object):
def __iter__(self):
return self
def __next__(self):
print('__next__ called')
r = random.randint(1, 10)
if r == 5:
print('raising StopIteration')
raise StopIteration
return r
DemoIterable上的迭代:
>>> di = DemoIterable()
>>> for x in di:
... print(x)
...
__iter__ called
__next__ called
9
__next__ called
8
__next__ called
10
__next__ called
3
__next__ called
10
__next__ called
raising StopIteration
讨论和插图
关于第1点和第2点:获取迭代器和不可靠的检查
考虑下面的类:
class BasicIterable(object):
def __getitem__(self, item):
if item == 3:
raise IndexError
return item
使用BasicIterable的实例调用iter将返回一个迭代器,没有任何问题,因为BasicIterable实现了__getitem__。
>>> b = BasicIterable()
>>> iter(b)
<iterator object at 0x7f1ab216e320>
然而,重要的是要注意,b没有__iter__属性,并且不被认为是Iterable或Sequence的实例:
>>> from collections import Iterable, Sequence
>>> hasattr(b, '__iter__')
False
>>> isinstance(b, Iterable)
False
>>> isinstance(b, Sequence)
False
这就是为什么Luciano Ramalho推荐调用iter并处理潜在的TypeError作为检查对象是否可迭代的最准确方法。直接从书中引用:
从Python 3.4开始,检查对象x是否可迭代的最准确方法是调用iter(x),如果不是则处理TypeError异常。这比使用isinstance(x, ABC .Iterable)更准确,因为iter(x)也会考虑遗留的__getitem__方法,而Iterable ABC则不会。
关于第3点:迭代只提供__getitem__而不提供__iter__的对象
在BasicIterable实例上迭代工作如预期:Python 构造一个迭代器,该迭代器尝试按索引获取项目,从0开始,直到引发IndexError。演示对象的__getitem__方法只是返回由iter返回的迭代器作为参数提供给__getitem__(self, item)的项。
>>> b = BasicIterable()
>>> it = iter(b)
>>> next(it)
0
>>> next(it)
1
>>> next(it)
2
>>> next(it)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
请注意,迭代器在无法返回下一项时引发StopIteration,而为item == 3引发的IndexError则在内部处理。这就是为什么使用for循环遍历BasicIterable可以正常工作的原因:
>>> for x in b:
... print(x)
...
0
1
2
下面是另一个例子,目的是让大家了解iter返回的迭代器是如何通过索引访问项目的。WrappedDict不继承dict,这意味着实例不会有__iter__方法。
class WrappedDict(object): # note: no inheritance from dict!
def __init__(self, dic):
self._dict = dic
def __getitem__(self, item):
try:
return self._dict[item] # delegate to dict.__getitem__
except KeyError:
raise IndexError
注意,对__getitem__的调用被委托给dict。__getitem__的方括号符号只是一个简写。
>>> w = WrappedDict({-1: 'not printed',
... 0: 'hi', 1: 'StackOverflow', 2: '!',
... 4: 'not printed',
... 'x': 'not printed'})
>>> for x in w:
... print(x)
...
hi
StackOverflow
!
第4点和第5点:iter在调用__iter__时检查迭代器:
当对对象o调用iter(o)时,iter将确保__iter__的返回值(如果存在该方法)是一个迭代器。这意味着返回的对象 必须实现__next__(或Python 2中的next)和__iter__。Iter不能对只有 提供__getitem__,因为它无法检查对象的项是否可以通过整数索引访问。
class FailIterIterable(object):
def __iter__(self):
return object() # not an iterator
class FailGetitemIterable(object):
def __getitem__(self, item):
raise Exception
注意,从FailIterIterable实例构造迭代器会立即失败,而从FailGetItemIterable实例构造迭代器会成功,但会在第一次调用__next__时抛出异常。
>>> fii = FailIterIterable()
>>> iter(fii)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: iter() returned non-iterator of type 'object'
>>>
>>> fgi = FailGetitemIterable()
>>> it = iter(fgi)
>>> next(it)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/path/iterdemo.py", line 42, in __getitem__
raise Exception
Exception
第6点:__iter__获胜
这一点很简单。如果一个对象实现了__iter__和__getitem__, iter将调用__iter__。考虑下面的类
class IterWinsDemo(object):
def __iter__(self):
return iter(['__iter__', 'wins'])
def __getitem__(self, item):
return ['__getitem__', 'wins'][item]
和循环遍历实例时的输出:
>>> iwd = IterWinsDemo()
>>> for x in iwd:
... print(x)
...
__iter__
wins
第7点:你的可迭代类应该实现__iter__
你可能会问自己,为什么大多数内置序列(如list)都实现__iter__方法,而__getitem__方法就足够了。
class WrappedList(object): # note: no inheritance from list!
def __init__(self, lst):
self._list = lst
def __getitem__(self, item):
return self._list[item]
毕竟,迭代上述类的实例,它委托调用__getitem__列表。__getitem__(使用方括号表示),将正常工作:
>>> wl = WrappedList(['A', 'B', 'C'])
>>> for x in wl:
... print(x)
...
A
B
C
自定义迭代对象应该实现__iter__的原因如下:
如果你实现__iter__,实例将被视为可迭代对象,isinstance(o, collections.abc.Iterable)将返回True。 如果__iter__返回的对象不是迭代器,iter将立即失败并引发TypeError。 __getitem__的特殊处理是出于向后兼容的原因。再次引用Fluent Python:
这就是为什么任何Python序列都是可迭代的:它们都实现了__getitem__。事实上, 标准序列也实现了__iter__,你的也应该实现,因为 由于向后兼容的原因,__getitem__存在特殊的处理 将来会消失(尽管在我写这篇文章时它并没有被弃用)。
如果object是可迭代的,下面代码中的isiterable函数将返回True。如果不是iterable则返回False
def isiterable(object_):
return hasattr(type(object_), "__iter__")
例子
fruits = ("apple", "banana", "peach")
isiterable(fruits) # returns True
num = 345
isiterable(num) # returns False
isiterable(str) # returns False because str type is type class and it's not iterable.
hello = "hello dude !"
isiterable(hello) # returns True because as you know string objects are iterable
从Python 3.5开始,你可以使用标准库中的typing模块来做类型相关的事情:
from typing import Iterable
...
if isinstance(my_item, Iterable):
print(True)
你可以检查__len__属性,而不是检查__iter__属性,它是由每个python内置可迭代对象实现的,包括字符串。
>>> hasattr(1, "__len__")
False
>>> hasattr(1.3, "__len__")
False
>>> hasattr("a", "__len__")
True
>>> hasattr([1,2,3], "__len__")
True
>>> hasattr({1,2}, "__len__")
True
>>> hasattr({"a":1}, "__len__")
True
>>> hasattr(("a", 1), "__len__")
True
由于显而易见的原因,不可迭代对象不会实现这一点。但是,它不会捕获没有实现它的用户定义迭代对象,也不会捕获生成器表达式,而iter可以处理生成器表达式。但是,这可以在一行中完成,并且为生成器添加一个简单的或表达式检查将解决这个问题。(注意,写入type(my_generator_expression) == generator会抛出NameError。请参考这个答案。)
你可以从类型中使用GeneratorType: >>>导入类型 > > >类型。GeneratorType <类“发电机”> >>> gen = (i for i in range(10)) >>> isinstance(gen, types.GeneratorType) 真正的 ——utdemir接受的回答
(这对于检查是否可以在对象上调用len非常有用。)
我一直不明白为什么python有callable(obj) -> bool,而没有iterable(obj) -> bool… 当然,hasattr(obj,'__call__')更容易,即使它更慢。
由于几乎所有其他答案都建议使用try/except TypeError,其中测试异常通常被认为是任何语言中不好的做法,这里是iterable(obj) -> bool的实现,我越来越喜欢并经常使用:
为了python 2,我将使用lambda来获得额外的性能提升… (在python 3中,你用什么来定义函数并不重要,def的速度与lambda大致相同)
iterable = lambda obj: hasattr(obj,'__iter__') or hasattr(obj,'__getitem__')
注意,这个函数对于带有__iter__的对象执行得更快,因为它不测试__getitem__。
大多数可迭代对象应该依赖于__iter__,而特殊情况下的对象则返回到__getitem__,尽管对于可迭代对象来说,这两者都是必需的。 (因为这是标准的,所以它也会影响C对象)
不是真的“正确”,但可以作为最常见的类型,如字符串,元组,浮动等快速检查…
>>> '__iter__' in dir('sds')
True
>>> '__iter__' in dir(56)
False
>>> '__iter__' in dir([5,6,9,8])
True
>>> '__iter__' in dir({'jh':'ff'})
True
>>> '__iter__' in dir({'jh'})
True
>>> '__iter__' in dir(56.9865)
False
有点晚了,但我问了自己这个问题,然后想到了一个答案。我不知道是不是有人发了这个。但本质上,我注意到所有可迭代类型的字典中都有__getitem__()。这是你不用尝试就能检查对象是否为可迭代对象的方法。(一语双关)
def is_attr(arg):
return '__getitem__' in dir(arg)
我最近一直在研究这个问题。基于此,我的结论是,现在这是最好的方法:
from collections.abc import Iterable # drop `.abc` with Python 2.7 or lower
def iterable(obj):
return isinstance(obj, Iterable)
上面的建议已经在前面,但普遍的共识是使用iter()会更好:
def iterable(obj):
try:
iter(obj)
except Exception:
return False
else:
return True
为了这个目的,我们在代码中也使用了iter(),但我最近开始越来越讨厌只有__getitem__被认为是可迭代的对象。在一个不可迭代对象中使用__getitem__是有正当理由的,因此上面的代码不能很好地工作。作为一个真实的例子,我们可以使用Faker。上面的代码报告它是可迭代的,但实际上试图迭代它会导致AttributeError(用Faker 4.0.2测试):
>>> from faker import Faker
>>> fake = Faker()
>>> iter(fake) # No exception, must be iterable
<iterator object at 0x7f1c71db58d0>
>>> list(fake) # Ooops
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/.../site-packages/faker/proxy.py", line 59, in __getitem__
return self._factory_map[locale.replace('-', '_')]
AttributeError: 'int' object has no attribute 'replace'
如果我们使用insinstance(),我们不会意外地认为Faker实例(或任何其他只有__getitem__的对象)是可迭代的:
>>> from collections.abc import Iterable
>>> from faker import Faker
>>> isinstance(Faker(), Iterable)
False
之前的回答评论说,使用iter()更安全,因为在Python中实现迭代的旧方法是基于__getitem__的,isinstance()方法不会检测到这一点。对于旧的Python版本,这可能是真的,但根据我非常详尽的测试,isinstance()现在工作得很好。isinstance()不起作用而iter()起作用的唯一情况是在使用Python 2时使用UserDict。如果这是相关的,可以使用isinstance(item, (Iterable, UserDict))来覆盖。
有很多方法来检查一个对象是否可迭代:
from collections.abc import Iterable
myobject = 'Roster'
if isinstance(myobject , Iterable):
print(f"{myobject } is iterable")
else:
print(f"strong text{myobject } is not iterable")
在我的代码中,我用来检查非可迭代对象:
hasattr (myobject, __trunc__’)
这非常快,也可以用来检查可迭代对象(使用not)。
我不是100%确定这个解决方案是否适用于所有对象,也许其他可以提供一些更多的背景。__trunc__方法与数值类型相关(所有可以舍入为整数的对象都需要它)。但是我没有发现任何包含__trunc__和__iter__或__getitem__的对象。