有没有像isiterable这样的方法?到目前为止,我找到的唯一解决办法就是打电话

hasattr(myObj, '__iter__')

但我不确定这是否万无一失。


检查__iter__适用于序列类型,但在Python 2中检查字符串会失败。我也想知道正确的答案,在那之前,这里有一种可能性(这也适用于字符串): 试一试: Some_object_iterator = iter(some_object) except TypeError as te: 打印(some_object, 'is not iterable')

内置iter检查__iter__方法,如果是字符串,则检查__getitem__方法。

另一种通用的python方法是假设一个可迭代对象,如果它在给定对象上不起作用,则会优雅地失败。Python术语表:

python编程风格,通过检查对象的方法或属性签名来确定对象的类型,而不是通过与某些类型对象的显式关系(“如果它看起来像鸭子,并且嘎嘎叫得像鸭子,那么它一定是鸭子。”)通过强调接口而不是特定的类型,设计良好的代码通过允许多态替换来提高其灵活性。duck类型避免使用type()或isinstance()进行测试。相反,它通常采用EAFP(请求原谅比请求许可更容易)风格的编程。

...

试一试: _ = (e代表my_object中的e) 除了TypeError: 打印my_object, 'is not iterable'

collections模块提供了一些抽象基类,允许询问类或实例是否提供特定的功能,例如: 从集合。abc import Iterable if isinstance(e, Iterable): # e是可迭代的

但是,这不会检查通过__getitem__可迭代的类。


这是不够的:__iter__返回的对象必须实现迭代协议(即next方法)。请参阅文档中的相关部分。

在Python中,一个好的实践是“尝试并查看”而不是“检查”。


你可以试试这个:

def iterable(a):
    try:
        (x for x in a)
        return True
    except TypeError:
        return False

如果我们可以创建一个迭代它的生成器(但从不使用生成器,以免占用空间),那么它就是可迭代的。听起来像是"废话"一类的事。为什么首先需要确定一个变量是否可迭代?


try:
  #treat object as iterable
except TypeError, e:
  #object is not actually iterable

不要检查你的鸭子是否真的是一只鸭子,看看它是否可迭代,就像它是可迭代的一样对待它,如果不是就抱怨。


Duck typing

try:
    iterator = iter(the_element)
except TypeError:
    # not iterable
else:
    # iterable

# for obj in iterator:
#     pass

类型检查

使用抽象基类。它们至少需要Python 2.6,并且只适用于新样式的类。

from collections.abc import Iterable   # import directly from collections for Python < 3.3

if isinstance(the_element, Iterable):
    # iterable
else:
    # not iterable

然而,iter()更可靠一些,如文档所述:

检查isinstance(obj, Iterable)检测类 注册为Iterable或具有__iter__()方法,但是 它不会检测使用__getitem__()迭代的类 方法。唯一可靠的方法来确定一个对象是否 Is iterable调用iter(obj)。


我在这里找到了一个很好的解决方案:

isiterable = lambda obj: isinstance(obj, basestring) \
    or getattr(obj, '__iter__', False)

在Python <= 2.5中,你不能也不应该——iterable是一个“非正式的”接口。

但是从Python 2.6和3.0开始,你可以利用新的ABC(抽象基类)基础设施以及一些内置的ABC,这些ABC在collections模块中可用:

from collections import Iterable

class MyObject(object):
    pass

mo = MyObject()
print isinstance(mo, Iterable)
Iterable.register(MyObject)
print isinstance(mo, Iterable)

print isinstance("abc", Iterable)

现在,这是否可取,或者是否有效,只是一个惯例的问题。正如你所看到的,你可以将一个不可迭代的对象注册为Iterable——它将在运行时引发一个异常。因此,isinstance获得了一个“新的”含义——它只是检查“声明的”类型兼容性,这在Python中是一个很好的方法。

另一方面,如果你的对象不能满足你所需要的接口,你会怎么做?举个例子:

from collections import Iterable
from traceback import print_exc

def check_and_raise(x):
    if not isinstance(x, Iterable):
        raise TypeError, "%s is not iterable" % x
    else:
        for i in x:
            print i

def just_iter(x):
    for i in x:
        print i


class NotIterable(object):
    pass

if __name__ == "__main__":
    try:
        check_and_raise(5)
    except:
        print_exc()
        print

    try:
        just_iter(5)
    except:
        print_exc()
        print

    try:
        Iterable.register(NotIterable)
        ni = NotIterable()
        check_and_raise(ni)
    except:
        print_exc()
        print

如果对象不满足您的期望,则抛出TypeError,但如果已经注册了正确的ABC,则检查将毫无用处。相反,如果__iter__方法可用,Python将自动识别该类的object为Iterable。

如果你只是期望一个可迭代对象,遍历它,然后忘记它。另一方面,如果您需要根据输入类型执行不同的操作,那么您可能会发现ABC基础结构非常有用。


到目前为止,我找到的最佳解决方案是:

Hasattr(obj, '__contains__')

它主要检查对象是否实现了in操作符。

优点(其他解决方案都不具备这三个优点):

它是一个表达式(工作为lambda,而不是try…变体除外) 它(应该)由所有可迭代对象实现,包括字符串(而不是__iter__) 适用于任何Python >= 2.5

注:

Python的“请求原谅,而不是允许”的哲学在例如,在一个列表中,你有可迭代对象和不可迭代对象,你需要根据它的类型区别对待每个元素(在try上处理可迭代对象,在except上处理不可迭代对象可以工作,但它看起来很丑,会误导人)时,就不会很好地工作了。 对于这个问题的解决方案,试图实际遍历对象(例如[x for x in obj])来检查它是否为可迭代对象,可能会导致对大型可迭代对象的显著性能损失(特别是如果你只需要可迭代对象的前几个元素,例如),应该避免


根据Python 2术语表,可迭代对象是

所有序列类型(如list、str和tuple)和一些非序列类型(如dict和file)以及使用__iter__()或__getitem__()方法定义的任何类的对象。可迭代对象可用于for循环和许多其他需要序列的地方(zip(), map(),…)。当一个可迭代对象作为参数传递给内置函数iter()时,它将返回该对象的迭代器。

当然,考虑到Python的一般编码风格,基于“请求原谅比请求许可更容易”这一事实。,一般的期望是使用

try:
    for i in object_in_question:
        do_something
except TypeError:
    do_something_for_non_iterable

但如果你需要显式检查它,你可以通过hasattr(object_in_question, "__iter__")或hasattr(object_in_question, "__getitem__")来测试可迭代对象。你需要检查两者,因为strs没有__iter__方法(至少在Python 2中没有,在Python 3中有),而且生成器对象没有__getitem__方法。


在我的脚本中,我经常发现定义一个可迭代函数很方便。 (现在合并了Alfe建议的简化):

import collections

def iterable(obj):
    return isinstance(obj, collections.Iterable):

因此,您可以测试任何对象是否具有非常可读的可迭代形式

if iterable(obj):
    # act on iterable
else:
    # not iterable

就像你对可调用函数所做的那样

编辑:如果你安装了numpy,你可以简单地做: 简单地说是什么

def iterable(obj):
    try: iter(obj)
    except: return False
    return True

如果没有numpy,可以简单地实现这段代码或上面的代码。


考虑到Python的duck类型,最简单的方法是捕捉错误(Python完全知道它期望从一个对象变成迭代器):

class A(object):
    def __getitem__(self, item):
        return something

class B(object):
    def __iter__(self):
        # Return a compliant iterator. Just an example
        return iter([])

class C(object):
    def __iter__(self):
        # Return crap
        return 1

class D(object): pass

def iterable(obj):
    try:
        iter(obj)
        return True
    except:
        return False

assert iterable(A())
assert iterable(B())
assert iterable(C())
assert not iterable(D())

注:

如果异常类型相同,则区分对象是否不可迭代或已经实现了有bug的__iter__是无关紧要的:无论如何,您将无法迭代对象。 我想我理解你的担忧:如果我也可以依赖鸭类型来引发AttributeError,如果__call__没有为我的对象定义,那么callable如何作为检查存在,但这不是可迭代检查的情况? 我不知道答案,但你可以实现我(和其他用户)给出的函数,或者只是在你的代码中捕获异常(你在那部分的实现将像我写的函数一样——只要确保你将迭代器的创建与其余代码隔离开来,这样你就可以捕获异常并将其与另一个TypeError区分开来。


def is_iterable(x):
    try:
        0 in x
    except TypeError:
        return False
    else:
        return True

这将对所有可迭代对象说“是”,但对Python 2中的字符串说“不”。(例如,当递归函数可以接受字符串或字符串容器时,这就是我想要的。在这种情况下,请求原谅可能会导致模糊代码,最好先征求允许。)

import numpy

class Yes:
    def __iter__(self):
        yield 1;
        yield 2;
        yield 3;

class No:
    pass

class Nope:
    def __iter__(self):
        return 'nonsense'

assert is_iterable(Yes())
assert is_iterable(range(3))
assert is_iterable((1,2,3))   # tuple
assert is_iterable([1,2,3])   # list
assert is_iterable({1,2,3})   # set
assert is_iterable({1:'one', 2:'two', 3:'three'})   # dictionary
assert is_iterable(numpy.array([1,2,3]))
assert is_iterable(bytearray("not really a string", 'utf-8'))

assert not is_iterable(No())
assert not is_iterable(Nope())
assert not is_iterable("string")
assert not is_iterable(42)
assert not is_iterable(True)
assert not is_iterable(None)

这里有许多其他策略会对字符串说“是”。如果你想的话就用吧。

import collections
import numpy

assert isinstance("string", collections.Iterable)
assert isinstance("string", collections.Sequence)
assert numpy.iterable("string")
assert iter("string")
assert hasattr("string", '__getitem__')

注意:is_iterable()会对bytes和bytearray类型的字符串说yes。

Python 3中的bytes对象是可迭代的True == is_iterable(b"string") == is_iterable("string".encode('utf-8')) Python 2和3中的bytearray对象是可迭代的True == is_iterable(bytearray(b"abc"))

O.P. hasattr(x, '__iter__')方法将对Python 3中的字符串说“是”,而在Python 2中对字符串说“否”(无论“或b”或u”)。感谢@LuisMasuelli注意到它也会让你在一个bug __iter__。


我想多讲一点iter, __iter__和__getitem__的相互作用,以及幕后发生的事情。有了这些知识,你就能明白为什么你能做到最好

try:
    iter(maybe_iterable)
    print('iteration will probably work')
except TypeError:
    print('not iterable')

我将首先列出事实,然后快速提醒您在python中使用for循环时会发生什么,然后进行讨论以说明事实。

事实

通过调用iter(o)可以从任何对象o中获得迭代器,前提是至少满足以下条件之一:a) o具有__iter__方法,该方法返回一个迭代器对象。迭代器是任何具有__iter__和__next__ (Python 2: next)方法的对象。B) o有__getitem__方法。 对象的实例,或者对象的实例 属性__iter__是不够的。 如果对象o只实现__getitem__,而不实现__iter__,则会构造iter(o) 一个迭代器,试图通过整数索引从o中获取项目,从索引0开始。迭代器将捕获所引发的任何IndexError(但没有其他错误),然后引发StopIteration本身。 在最一般的意义上,没有办法检查iter返回的迭代器是否正常,只能尝试它。 如果对象o实现了__iter__,则iter函数将确保 __iter__返回的对象是一个迭代器。没有健康检查 如果一个对象只实现__getitem__。 __iter__获胜。如果对象o同时实现了__iter__和__getitem__,则iter(o)将调用__iter__。 如果你想让你自己的对象可迭代,总是实现__iter__方法。

for循环

为了继续学习,您需要了解在Python中使用for循环时会发生什么。如果你已经知道了,可以直接跳到下一节。

当你将for item in o用于某个可迭代对象o时,Python调用iter(o)并期望将一个迭代器对象作为返回值。迭代器是任何实现__next__(或Python 2中的next)方法和__iter__方法的对象。

按照惯例,迭代器的__iter__方法应该返回对象本身(即返回self)。然后Python在迭代器上调用next,直到引发StopIteration。所有这些都是隐式发生的,但下面的演示使其可见:

import random

class DemoIterable(object):
    def __iter__(self):
        print('__iter__ called')
        return DemoIterator()

class DemoIterator(object):
    def __iter__(self):
        return self

    def __next__(self):
        print('__next__ called')
        r = random.randint(1, 10)
        if r == 5:
            print('raising StopIteration')
            raise StopIteration
        return r

DemoIterable上的迭代:

>>> di = DemoIterable()
>>> for x in di:
...     print(x)
...
__iter__ called
__next__ called
9
__next__ called
8
__next__ called
10
__next__ called
3
__next__ called
10
__next__ called
raising StopIteration

讨论和插图

关于第1点和第2点:获取迭代器和不可靠的检查

考虑下面的类:

class BasicIterable(object):
    def __getitem__(self, item):
        if item == 3:
            raise IndexError
        return item

使用BasicIterable的实例调用iter将返回一个迭代器,没有任何问题,因为BasicIterable实现了__getitem__。

>>> b = BasicIterable()
>>> iter(b)
<iterator object at 0x7f1ab216e320>

然而,重要的是要注意,b没有__iter__属性,并且不被认为是Iterable或Sequence的实例:

>>> from collections import Iterable, Sequence
>>> hasattr(b, '__iter__')
False
>>> isinstance(b, Iterable)
False
>>> isinstance(b, Sequence)
False

这就是为什么Luciano Ramalho推荐调用iter并处理潜在的TypeError作为检查对象是否可迭代的最准确方法。直接从书中引用:

从Python 3.4开始,检查对象x是否可迭代的最准确方法是调用iter(x),如果不是则处理TypeError异常。这比使用isinstance(x, ABC .Iterable)更准确,因为iter(x)也会考虑遗留的__getitem__方法,而Iterable ABC则不会。

关于第3点:迭代只提供__getitem__而不提供__iter__的对象

在BasicIterable实例上迭代工作如预期:Python 构造一个迭代器,该迭代器尝试按索引获取项目,从0开始,直到引发IndexError。演示对象的__getitem__方法只是返回由iter返回的迭代器作为参数提供给__getitem__(self, item)的项。

>>> b = BasicIterable()
>>> it = iter(b)
>>> next(it)
0
>>> next(it)
1
>>> next(it)
2
>>> next(it)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

请注意,迭代器在无法返回下一项时引发StopIteration,而为item == 3引发的IndexError则在内部处理。这就是为什么使用for循环遍历BasicIterable可以正常工作的原因:

>>> for x in b:
...     print(x)
...
0
1
2

下面是另一个例子,目的是让大家了解iter返回的迭代器是如何通过索引访问项目的。WrappedDict不继承dict,这意味着实例不会有__iter__方法。

class WrappedDict(object): # note: no inheritance from dict!
    def __init__(self, dic):
        self._dict = dic

    def __getitem__(self, item):
        try:
            return self._dict[item] # delegate to dict.__getitem__
        except KeyError:
            raise IndexError

注意,对__getitem__的调用被委托给dict。__getitem__的方括号符号只是一个简写。

>>> w = WrappedDict({-1: 'not printed',
...                   0: 'hi', 1: 'StackOverflow', 2: '!',
...                   4: 'not printed', 
...                   'x': 'not printed'})
>>> for x in w:
...     print(x)
... 
hi
StackOverflow
!

第4点和第5点:iter在调用__iter__时检查迭代器:

当对对象o调用iter(o)时,iter将确保__iter__的返回值(如果存在该方法)是一个迭代器。这意味着返回的对象 必须实现__next__(或Python 2中的next)和__iter__。Iter不能对只有 提供__getitem__,因为它无法检查对象的项是否可以通过整数索引访问。

class FailIterIterable(object):
    def __iter__(self):
        return object() # not an iterator

class FailGetitemIterable(object):
    def __getitem__(self, item):
        raise Exception

注意,从FailIterIterable实例构造迭代器会立即失败,而从FailGetItemIterable实例构造迭代器会成功,但会在第一次调用__next__时抛出异常。

>>> fii = FailIterIterable()
>>> iter(fii)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: iter() returned non-iterator of type 'object'
>>>
>>> fgi = FailGetitemIterable()
>>> it = iter(fgi)
>>> next(it)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/path/iterdemo.py", line 42, in __getitem__
    raise Exception
Exception

第6点:__iter__获胜

这一点很简单。如果一个对象实现了__iter__和__getitem__, iter将调用__iter__。考虑下面的类

class IterWinsDemo(object):
    def __iter__(self):
        return iter(['__iter__', 'wins'])

    def __getitem__(self, item):
        return ['__getitem__', 'wins'][item]

和循环遍历实例时的输出:

>>> iwd = IterWinsDemo()
>>> for x in iwd:
...     print(x)
...
__iter__
wins

第7点:你的可迭代类应该实现__iter__

你可能会问自己,为什么大多数内置序列(如list)都实现__iter__方法,而__getitem__方法就足够了。

class WrappedList(object): # note: no inheritance from list!
    def __init__(self, lst):
        self._list = lst

    def __getitem__(self, item):
        return self._list[item]

毕竟,迭代上述类的实例,它委托调用__getitem__列表。__getitem__(使用方括号表示),将正常工作:

>>> wl = WrappedList(['A', 'B', 'C'])
>>> for x in wl:
...     print(x)
... 
A
B
C

自定义迭代对象应该实现__iter__的原因如下:

如果你实现__iter__,实例将被视为可迭代对象,isinstance(o, collections.abc.Iterable)将返回True。 如果__iter__返回的对象不是迭代器,iter将立即失败并引发TypeError。 __getitem__的特殊处理是出于向后兼容的原因。再次引用Fluent Python:

这就是为什么任何Python序列都是可迭代的:它们都实现了__getitem__。事实上, 标准序列也实现了__iter__,你的也应该实现,因为 由于向后兼容的原因,__getitem__存在特殊的处理 将来会消失(尽管在我写这篇文章时它并没有被弃用)。


Pandas有这样一个内置功能:

from pandas.util.testing import isiterable

如果object是可迭代的,下面代码中的isiterable函数将返回True。如果不是iterable则返回False

def isiterable(object_):
    return hasattr(type(object_), "__iter__")

例子

fruits = ("apple", "banana", "peach")
isiterable(fruits) # returns True

num = 345
isiterable(num) # returns False

isiterable(str) # returns False because str type is type class and it's not iterable.

hello = "hello dude !"
isiterable(hello) # returns True because as you know string objects are iterable

从Python 3.5开始,你可以使用标准库中的typing模块来做类型相关的事情:

from typing import Iterable

...

if isinstance(my_item, Iterable):
    print(True)

你可以检查__len__属性,而不是检查__iter__属性,它是由每个python内置可迭代对象实现的,包括字符串。

>>> hasattr(1, "__len__")
False
>>> hasattr(1.3, "__len__")
False
>>> hasattr("a", "__len__")
True
>>> hasattr([1,2,3], "__len__")
True
>>> hasattr({1,2}, "__len__")
True
>>> hasattr({"a":1}, "__len__")
True
>>> hasattr(("a", 1), "__len__")
True

由于显而易见的原因,不可迭代对象不会实现这一点。但是,它不会捕获没有实现它的用户定义迭代对象,也不会捕获生成器表达式,而iter可以处理生成器表达式。但是,这可以在一行中完成,并且为生成器添加一个简单的或表达式检查将解决这个问题。(注意,写入type(my_generator_expression) == generator会抛出NameError。请参考这个答案。)

你可以从类型中使用GeneratorType: >>>导入类型 > > >类型。GeneratorType <类“发电机”> >>> gen = (i for i in range(10)) >>> isinstance(gen, types.GeneratorType) 真正的 ——utdemir接受的回答

(这对于检查是否可以在对象上调用len非常有用。)


我一直不明白为什么python有callable(obj) -> bool,而没有iterable(obj) -> bool… 当然,hasattr(obj,'__call__')更容易,即使它更慢。

由于几乎所有其他答案都建议使用try/except TypeError,其中测试异常通常被认为是任何语言中不好的做法,这里是iterable(obj) -> bool的实现,我越来越喜欢并经常使用:

为了python 2,我将使用lambda来获得额外的性能提升… (在python 3中,你用什么来定义函数并不重要,def的速度与lambda大致相同)

iterable = lambda obj: hasattr(obj,'__iter__') or hasattr(obj,'__getitem__')

注意,这个函数对于带有__iter__的对象执行得更快,因为它不测试__getitem__。

大多数可迭代对象应该依赖于__iter__,而特殊情况下的对象则返回到__getitem__,尽管对于可迭代对象来说,这两者都是必需的。 (因为这是标准的,所以它也会影响C对象)


不是真的“正确”,但可以作为最常见的类型,如字符串,元组,浮动等快速检查…

>>> '__iter__' in dir('sds')
True
>>> '__iter__' in dir(56)
False
>>> '__iter__' in dir([5,6,9,8])
True
>>> '__iter__' in dir({'jh':'ff'})
True
>>> '__iter__' in dir({'jh'})
True
>>> '__iter__' in dir(56.9865)
False

有点晚了,但我问了自己这个问题,然后想到了一个答案。我不知道是不是有人发了这个。但本质上,我注意到所有可迭代类型的字典中都有__getitem__()。这是你不用尝试就能检查对象是否为可迭代对象的方法。(一语双关)

def is_attr(arg):
    return '__getitem__' in dir(arg)

我最近一直在研究这个问题。基于此,我的结论是,现在这是最好的方法:

from collections.abc import Iterable   # drop `.abc` with Python 2.7 or lower

def iterable(obj):
    return isinstance(obj, Iterable)

上面的建议已经在前面,但普遍的共识是使用iter()会更好:

def iterable(obj):
    try:
        iter(obj)
    except Exception:
        return False
    else:
        return True

为了这个目的,我们在代码中也使用了iter(),但我最近开始越来越讨厌只有__getitem__被认为是可迭代的对象。在一个不可迭代对象中使用__getitem__是有正当理由的,因此上面的代码不能很好地工作。作为一个真实的例子,我们可以使用Faker。上面的代码报告它是可迭代的,但实际上试图迭代它会导致AttributeError(用Faker 4.0.2测试):

>>> from faker import Faker
>>> fake = Faker()
>>> iter(fake)    # No exception, must be iterable
<iterator object at 0x7f1c71db58d0>
>>> list(fake)    # Ooops
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/home/.../site-packages/faker/proxy.py", line 59, in __getitem__
    return self._factory_map[locale.replace('-', '_')]
AttributeError: 'int' object has no attribute 'replace'

如果我们使用insinstance(),我们不会意外地认为Faker实例(或任何其他只有__getitem__的对象)是可迭代的:

>>> from collections.abc import Iterable
>>> from faker import Faker
>>> isinstance(Faker(), Iterable)
False

之前的回答评论说,使用iter()更安全,因为在Python中实现迭代的旧方法是基于__getitem__的,isinstance()方法不会检测到这一点。对于旧的Python版本,这可能是真的,但根据我非常详尽的测试,isinstance()现在工作得很好。isinstance()不起作用而iter()起作用的唯一情况是在使用Python 2时使用UserDict。如果这是相关的,可以使用isinstance(item, (Iterable, UserDict))来覆盖。


有很多方法来检查一个对象是否可迭代:

from collections.abc import Iterable
myobject = 'Roster'
  
if isinstance(myobject , Iterable):
    print(f"{myobject } is iterable") 
else:
   print(f"strong text{myobject } is not iterable")

在我的代码中,我用来检查非可迭代对象:

hasattr (myobject, __trunc__’)

这非常快,也可以用来检查可迭代对象(使用not)。

我不是100%确定这个解决方案是否适用于所有对象,也许其他可以提供一些更多的背景。__trunc__方法与数值类型相关(所有可以舍入为整数的对象都需要它)。但是我没有发现任何包含__trunc__和__iter__或__getitem__的对象。