有没有像isiterable这样的方法?到目前为止,我找到的唯一解决办法就是打电话

hasattr(myObj, '__iter__')

但我不确定这是否万无一失。


当前回答

在我的代码中,我用来检查非可迭代对象:

hasattr (myobject, __trunc__’)

这非常快,也可以用来检查可迭代对象(使用not)。

我不是100%确定这个解决方案是否适用于所有对象,也许其他可以提供一些更多的背景。__trunc__方法与数值类型相关(所有可以舍入为整数的对象都需要它)。但是我没有发现任何包含__trunc__和__iter__或__getitem__的对象。

其他回答

def is_iterable(x):
    try:
        0 in x
    except TypeError:
        return False
    else:
        return True

这将对所有可迭代对象说“是”,但对Python 2中的字符串说“不”。(例如,当递归函数可以接受字符串或字符串容器时,这就是我想要的。在这种情况下,请求原谅可能会导致模糊代码,最好先征求允许。)

import numpy

class Yes:
    def __iter__(self):
        yield 1;
        yield 2;
        yield 3;

class No:
    pass

class Nope:
    def __iter__(self):
        return 'nonsense'

assert is_iterable(Yes())
assert is_iterable(range(3))
assert is_iterable((1,2,3))   # tuple
assert is_iterable([1,2,3])   # list
assert is_iterable({1,2,3})   # set
assert is_iterable({1:'one', 2:'two', 3:'three'})   # dictionary
assert is_iterable(numpy.array([1,2,3]))
assert is_iterable(bytearray("not really a string", 'utf-8'))

assert not is_iterable(No())
assert not is_iterable(Nope())
assert not is_iterable("string")
assert not is_iterable(42)
assert not is_iterable(True)
assert not is_iterable(None)

这里有许多其他策略会对字符串说“是”。如果你想的话就用吧。

import collections
import numpy

assert isinstance("string", collections.Iterable)
assert isinstance("string", collections.Sequence)
assert numpy.iterable("string")
assert iter("string")
assert hasattr("string", '__getitem__')

注意:is_iterable()会对bytes和bytearray类型的字符串说yes。

Python 3中的bytes对象是可迭代的True == is_iterable(b"string") == is_iterable("string".encode('utf-8')) Python 2和3中的bytearray对象是可迭代的True == is_iterable(bytearray(b"abc"))

O.P. hasattr(x, '__iter__')方法将对Python 3中的字符串说“是”,而在Python 2中对字符串说“否”(无论“或b”或u”)。感谢@LuisMasuelli注意到它也会让你在一个bug __iter__。

这是不够的:__iter__返回的对象必须实现迭代协议(即next方法)。请参阅文档中的相关部分。

在Python中,一个好的实践是“尝试并查看”而不是“检查”。

检查__iter__适用于序列类型,但在Python 2中检查字符串会失败。我也想知道正确的答案,在那之前,这里有一种可能性(这也适用于字符串): 试一试: Some_object_iterator = iter(some_object) except TypeError as te: 打印(some_object, 'is not iterable')

内置iter检查__iter__方法,如果是字符串,则检查__getitem__方法。

另一种通用的python方法是假设一个可迭代对象,如果它在给定对象上不起作用,则会优雅地失败。Python术语表:

python编程风格,通过检查对象的方法或属性签名来确定对象的类型,而不是通过与某些类型对象的显式关系(“如果它看起来像鸭子,并且嘎嘎叫得像鸭子,那么它一定是鸭子。”)通过强调接口而不是特定的类型,设计良好的代码通过允许多态替换来提高其灵活性。duck类型避免使用type()或isinstance()进行测试。相反,它通常采用EAFP(请求原谅比请求许可更容易)风格的编程。

...

试一试: _ = (e代表my_object中的e) 除了TypeError: 打印my_object, 'is not iterable'

collections模块提供了一些抽象基类,允许询问类或实例是否提供特定的功能,例如: 从集合。abc import Iterable if isinstance(e, Iterable): # e是可迭代的

但是,这不会检查通过__getitem__可迭代的类。

不是真的“正确”,但可以作为最常见的类型,如字符串,元组,浮动等快速检查…

>>> '__iter__' in dir('sds')
True
>>> '__iter__' in dir(56)
False
>>> '__iter__' in dir([5,6,9,8])
True
>>> '__iter__' in dir({'jh':'ff'})
True
>>> '__iter__' in dir({'jh'})
True
>>> '__iter__' in dir(56.9865)
False

到目前为止,我找到的最佳解决方案是:

Hasattr(obj, '__contains__')

它主要检查对象是否实现了in操作符。

优点(其他解决方案都不具备这三个优点):

它是一个表达式(工作为lambda,而不是try…变体除外) 它(应该)由所有可迭代对象实现,包括字符串(而不是__iter__) 适用于任何Python >= 2.5

注:

Python的“请求原谅,而不是允许”的哲学在例如,在一个列表中,你有可迭代对象和不可迭代对象,你需要根据它的类型区别对待每个元素(在try上处理可迭代对象,在except上处理不可迭代对象可以工作,但它看起来很丑,会误导人)时,就不会很好地工作了。 对于这个问题的解决方案,试图实际遍历对象(例如[x for x in obj])来检查它是否为可迭代对象,可能会导致对大型可迭代对象的显著性能损失(特别是如果你只需要可迭代对象的前几个元素,例如),应该避免