我有以下DataFrame(df):

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))

我通过分配添加更多列:

df['mean'] = df.mean(1)

如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?


当前回答

这里有一个非常简单的答案(只有一行)。

在将“n”列添加到df中之后,可以执行以下操作。

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))
df['mean'] = df.mean(1)
df
           0           1           2           3           4        mean
0   0.929616    0.316376    0.183919    0.204560    0.567725    0.440439
1   0.595545    0.964515    0.653177    0.748907    0.653570    0.723143
2   0.747715    0.961307    0.008388    0.106444    0.298704    0.424512
3   0.656411    0.809813    0.872176    0.964648    0.723685    0.805347
4   0.642475    0.717454    0.467599    0.325585    0.439645    0.518551
5   0.729689    0.994015    0.676874    0.790823    0.170914    0.672463
6   0.026849    0.800370    0.903723    0.024676    0.491747    0.449473
7   0.526255    0.596366    0.051958    0.895090    0.728266    0.559587
8   0.818350    0.500223    0.810189    0.095969    0.218950    0.488736
9   0.258719    0.468106    0.459373    0.709510    0.178053    0.414752


### here you can add below line and it should work 
# Don't forget the two (()) 'brackets' around columns names.Otherwise, it'll give you an error.

df = df[list(('mean',0, 1, 2,3,4))]
df

        mean           0           1           2           3           4
0   0.440439    0.929616    0.316376    0.183919    0.204560    0.567725
1   0.723143    0.595545    0.964515    0.653177    0.748907    0.653570
2   0.424512    0.747715    0.961307    0.008388    0.106444    0.298704
3   0.805347    0.656411    0.809813    0.872176    0.964648    0.723685
4   0.518551    0.642475    0.717454    0.467599    0.325585    0.439645
5   0.672463    0.729689    0.994015    0.676874    0.790823    0.170914
6   0.449473    0.026849    0.800370    0.903723    0.024676    0.491747
7   0.559587    0.526255    0.596366    0.051958    0.895090    0.728266
8   0.488736    0.818350    0.500223    0.810189    0.095969    0.218950
9   0.414752    0.258719    0.468106    0.459373    0.709510    0.178053

其他回答

下面是一个超级简单的方法示例。如果您要从excel复制标题,请使用.split('\t')

df = df['FILE_NAME DISPLAY_PATH SHAREPOINT_PATH RETAILER LAST_UPDATE'.split()]

您可以使用一个集合,它是唯一元素的无序集合,以保持“其他列的顺序不变”:

other_columns = list(set(df.columns).difference(["mean"])) #[0, 1, 2, 3, 4]

然后,可以通过以下方式使用lambda将特定列移动到前面:

In [1]: import numpy as np                                                                               

In [2]: import pandas as pd                                                                              

In [3]: df = pd.DataFrame(np.random.rand(10, 5))                                                         

In [4]: df["mean"] = df.mean(1)                                                                          

In [5]: move_col_to_front = lambda df, col: df[[col]+list(set(df.columns).difference([col]))]            

In [6]: move_col_to_front(df, "mean")                                                                    
Out[6]: 
       mean         0         1         2         3         4
0  0.697253  0.600377  0.464852  0.938360  0.945293  0.537384
1  0.609213  0.703387  0.096176  0.971407  0.955666  0.319429
2  0.561261  0.791842  0.302573  0.662365  0.728368  0.321158
3  0.518720  0.710443  0.504060  0.663423  0.208756  0.506916
4  0.616316  0.665932  0.794385  0.163000  0.664265  0.793995
5  0.519757  0.585462  0.653995  0.338893  0.714782  0.305654
6  0.532584  0.434472  0.283501  0.633156  0.317520  0.994271
7  0.640571  0.732680  0.187151  0.937983  0.921097  0.423945
8  0.562447  0.790987  0.200080  0.317812  0.641340  0.862018
9  0.563092  0.811533  0.662709  0.396048  0.596528  0.348642

In [7]: move_col_to_front(df, 2)                                                                         
Out[7]: 
          2         0         1         3         4      mean
0  0.938360  0.600377  0.464852  0.945293  0.537384  0.697253
1  0.971407  0.703387  0.096176  0.955666  0.319429  0.609213
2  0.662365  0.791842  0.302573  0.728368  0.321158  0.561261
3  0.663423  0.710443  0.504060  0.208756  0.506916  0.518720
4  0.163000  0.665932  0.794385  0.664265  0.793995  0.616316
5  0.338893  0.585462  0.653995  0.714782  0.305654  0.519757
6  0.633156  0.434472  0.283501  0.317520  0.994271  0.532584
7  0.937983  0.732680  0.187151  0.921097  0.423945  0.640571
8  0.317812  0.790987  0.200080  0.641340  0.862018  0.562447
9  0.396048  0.811533  0.662709  0.596528  0.348642  0.563092
import numpy as np
import pandas as pd
df = pd.DataFrame()
column_names = ['x','y','z','mean']
for col in column_names: 
    df[col] = np.random.randint(0,100, size=10000)

您可以尝试以下解决方案:

解决方案1:

df = df[ ['mean'] + [ col for col in df.columns if col != 'mean' ] ]

解决方案2:


df = df[['mean', 'x', 'y', 'z']]

解决方案3:

col = df.pop("mean")
df = df.insert(0, col.name, col)

解决方案4:

df.set_index(df.columns[-1], inplace=True)
df.reset_index(inplace=True)

解决方案5:

cols = list(df)
cols = [cols[-1]] + cols[:-1]
df = df[cols]

解决方案6:

order = [1,2,3,0] # setting column's order
df = df[[df.columns[i] for i in order]]

时间比较:

解决方案1:

CPU时间:用户1.05 ms,sys:35µs,总计:1.08 ms壁时间:995µs

解决方案2:

CPU时间:用户933µs,系统:0 ns,总计:933µ壁时间:800µs

解决方案3:

CPU时间:用户0 ns,sys:1.35 ms,总计:1.35 ms壁时间:1.08 ms

解决方案4:

CPU时间:用户1.23毫秒,系统:45µs,总计:1.27毫秒壁时间:986µs

解决方案5:

CPU时间:用户1.09 ms,系统:19µs,总计:1.11 ms壁时间:949µs

解决方案6:

CPU时间:用户955µs,系统:34µs,总计:989µs壁时间:859µs

书中最黑客的方法

df.insert(0, "test", df["mean"])
df = df.drop(columns=["mean"]).rename(columns={"test": "mean"})

我很喜欢Shoresh的回答:当你不知道位置时,使用集合功能来删除列,但这不符合我的目的,因为我需要保持原始的列顺序(具有任意的列标签)。

不过,我通过使用boltons包中的IndexedSet实现了这一点。

我还需要重新添加多个列标签,因此对于更一般的情况,我使用了以下代码:

from boltons.setutils import IndexedSet
cols = list(IndexedSet(df.columns.tolist()) - set(['mean', 'std']))
cols[0:0] =['mean', 'std']
df = df[cols]

希望这对搜索此线程以寻求通用解决方案的任何人都有用。