我有以下DataFrame(df):

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))

我通过分配添加更多列:

df['mean'] = df.mean(1)

如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?


当前回答

简单地说,

df = df[['mean'] + df.columns[:-1].tolist()]

其他回答

你也可以这样做:

df = df[['mean', '0', '1', '2', '3']]

您可以通过以下方式获取列列表:

cols = list(df.columns.values)

输出将产生:

['0', '1', '2', '3', 'mean']

…然后,在将其放入第一个函数之前,可以手动重新排列

您可以使用一个集合,它是唯一元素的无序集合,以保持“其他列的顺序不变”:

other_columns = list(set(df.columns).difference(["mean"])) #[0, 1, 2, 3, 4]

然后,可以通过以下方式使用lambda将特定列移动到前面:

In [1]: import numpy as np                                                                               

In [2]: import pandas as pd                                                                              

In [3]: df = pd.DataFrame(np.random.rand(10, 5))                                                         

In [4]: df["mean"] = df.mean(1)                                                                          

In [5]: move_col_to_front = lambda df, col: df[[col]+list(set(df.columns).difference([col]))]            

In [6]: move_col_to_front(df, "mean")                                                                    
Out[6]: 
       mean         0         1         2         3         4
0  0.697253  0.600377  0.464852  0.938360  0.945293  0.537384
1  0.609213  0.703387  0.096176  0.971407  0.955666  0.319429
2  0.561261  0.791842  0.302573  0.662365  0.728368  0.321158
3  0.518720  0.710443  0.504060  0.663423  0.208756  0.506916
4  0.616316  0.665932  0.794385  0.163000  0.664265  0.793995
5  0.519757  0.585462  0.653995  0.338893  0.714782  0.305654
6  0.532584  0.434472  0.283501  0.633156  0.317520  0.994271
7  0.640571  0.732680  0.187151  0.937983  0.921097  0.423945
8  0.562447  0.790987  0.200080  0.317812  0.641340  0.862018
9  0.563092  0.811533  0.662709  0.396048  0.596528  0.348642

In [7]: move_col_to_front(df, 2)                                                                         
Out[7]: 
          2         0         1         3         4      mean
0  0.938360  0.600377  0.464852  0.945293  0.537384  0.697253
1  0.971407  0.703387  0.096176  0.955666  0.319429  0.609213
2  0.662365  0.791842  0.302573  0.728368  0.321158  0.561261
3  0.663423  0.710443  0.504060  0.208756  0.506916  0.518720
4  0.163000  0.665932  0.794385  0.664265  0.793995  0.616316
5  0.338893  0.585462  0.653995  0.714782  0.305654  0.519757
6  0.633156  0.434472  0.283501  0.317520  0.994271  0.532584
7  0.937983  0.732680  0.187151  0.921097  0.423945  0.640571
8  0.317812  0.790987  0.200080  0.641340  0.862018  0.562447
9  0.396048  0.811533  0.662709  0.596528  0.348642  0.563092

熊猫>=1.3(2022年编辑):

df.insert(0, 'mean', df.pop('mean'))

怎么样(对于熊猫<1.3,原始答案)

df.insert(0, 'mean', df['mean'])

https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#column-选择添加删除

我想到了和Dmitriy Work一样的答案,显然是最简单的:

df["mean"] = df.mean(1)
l =  list(np.arange(0,len(df.columns) -1 ))
l.insert(0,-1)
df.iloc[:,l]

我尝试了创建一个order函数,您可以使用Stata的order命令对列进行重新排序/移动。最好创建一个py文件(其名称可能是order.py),并将其保存在目录中并调用它的函数

def order(dataframe,cols,f_or_l=None,before=None, after=None):

#만든이: 김완석, Stata로 뚝딱뚝딱 저자, blog.naver.com/sanzo213 운영
# 갖다 쓰시거나 수정을 하셔도 되지만 출처는 꼭 밝혀주세요
# cols옵션 및 befor/after옵션에 튜플이 가능하게끔 수정했으며, 오류문구 수정함(2021.07.12,1)
# 칼럼이 멀티인덱스인 상태에서 reset_index()메소드 사용했을 시 적용안되는 걸 수정함(2021.07.12,2) 

import pandas as pd
if (type(cols)==str) or (type(cols)==int) or (type(cols)==float) or (type(cols)==bool) or type(cols)==tuple:    
    cols=[cols]
    
dd=list(dataframe.columns)
for i in cols:
    i
    dd.remove(i) #cols요소를 제거함
    
if (f_or_l==None) & ((before==None) & (after==None)):
    print('f_or_l옵션을 쓰시거나 아니면 before옵션/after옵션 쓰셔야되요')
    
if ((f_or_l=='first') or (f_or_l=='last')) & ~((before==None) & (after==None)):
    print('f_or_l옵션 사용시 before after 옵션 사용불가입니다.')
    
if (f_or_l=='first') & (before==None) & (after==None):
    new_order=cols+dd
    dataframe=dataframe[new_order]
    return dataframe

if (f_or_l=='last') & (before==None) & (after==None):   
    new_order=dd+cols
    dataframe=dataframe[new_order]
    return dataframe
    
if (before!=None) & (after!=None):
    print('before옵션 after옵션 둘다 쓸 수 없습니다.')
    

if (before!=None) & (after==None) & (f_or_l==None):

    if not((type(before)==str) or (type(before)==int) or (type(before)==float) or
       (type(before)==bool) or ((type(before)!=list)) or 
       ((type(before)==tuple))):
        print('before옵션은 칼럼 하나만 입력가능하며 리스트 형태로도 입력하지 마세요.')
    
    else:
        b=dd[:dd.index(before)]
        a=dd[dd.index(before):]
        
        new_order=b+cols+a
        dataframe=dataframe[new_order]  
        return dataframe
    
if (after!=None) & (before==None) & (f_or_l==None):

    if not((type(after)==str) or (type(after)==int) or (type(after)==float) or
       (type(after)==bool) or ((type(after)!=list)) or 
       ((type(after)==tuple))):
            
        print('after옵션은 칼럼 하나만 입력가능하며 리스트 형태로도 입력하지 마세요.')  

    else:
        b=dd[:dd.index(after)+1]
        a=dd[dd.index(after)+1:]
        
        new_order=b+cols+a
        dataframe=dataframe[new_order]
        return dataframe

下面的python代码是我制作的order函数的一个示例。我希望您可以使用我的order函数轻松地对列进行重新排序:)

# module

import pandas as pd
import numpy as np
from order import order # call order function from order.py file

# make a dataset

columns='a b c d e f g h i j k'.split()
dic={}

n=-1
for i in columns:
    
    n+=1
    dic[i]=list(range(1+n,10+1+n))
data=pd.DataFrame(dic)
print(data)

# use order function (1) : order column e in the first

data2=order(data,'e',f_or_l='first')
print(data2)

# use order function (2): order column e in the last , "data" dataframe

print(order(data,'e',f_or_l='last'))


# use order function (3) : order column i before column c in "data" dataframe

print(order(data,'i',before='c'))


# use order function (4) : order column g after column b in "data" dataframe

print(order(data,'g',after='b'))

# use order function (4) : order columns ['c', 'd', 'e'] after column i in "data" dataframe

print(order(data,['c', 'd', 'e'],after='i'))