我有以下DataFrame(df):

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))

我通过分配添加更多列:

df['mean'] = df.mean(1)

如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?


当前回答

简单地说,

df = df[['mean'] + df.columns[:-1].tolist()]

其他回答

一种简单的方法是使用set(),特别是当您有一长串列并且不想手动处理它们时:

cols = list(set(df.columns.tolist()) - set(['mean']))
cols.insert(0, 'mean')
df = df[cols]

你也可以这样做:

df = df[['mean', '0', '1', '2', '3']]

您可以通过以下方式获取列列表:

cols = list(df.columns.values)

输出将产生:

['0', '1', '2', '3', 'mean']

…然后,在将其放入第一个函数之前,可以手动重新排列

我相信,如果你知道另一列的位置,@Aman的答案是最好的。

如果您不知道mean的位置,但只有它的名称,则不能直接使用cols=cols[-1:]+cols[:-1]。以下是我接下来能想到的最好的东西:

meanDf = pd.DataFrame(df.pop('mean'))
# now df doesn't contain "mean" anymore. Order of join will move it to left or right:
meanDf.join(df) # has mean as first column
df.join(meanDf) # has mean as last column

只需键入要更改的列名,然后为新位置设置索引。

def change_column_order(df, col_name, index):
    cols = df.columns.tolist()
    cols.remove(col_name)
    cols.insert(index, col_name)
    return df[cols]

对于您的情况,这将是:

df = change_column_order(df, 'mean', 0)

这个问题以前已经回答过,但reindex_axis现在已被弃用,因此我建议使用:

df = df.reindex(sorted(df.columns), axis=1)

对于那些想要指定他们想要的顺序而不是仅仅对它们进行排序的人来说,下面列出了解决方案:

df = df.reindex(['the','order','you','want'], axis=1)

现在,如何对列名列表排序真的不是熊猫问题,而是Python列表操作问题。有很多方法可以做到这一点,我认为这个答案有一个非常简洁的方法。