我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
当前回答
仅仅是翻转往往会有帮助。
df[df.columns[::-1]]
或者只是洗牌看看。
import random
cols = list(df.columns)
random.shuffle(cols)
df[cols]
其他回答
我很喜欢Shoresh的回答:当你不知道位置时,使用集合功能来删除列,但这不符合我的目的,因为我需要保持原始的列顺序(具有任意的列标签)。
不过,我通过使用boltons包中的IndexedSet实现了这一点。
我还需要重新添加多个列标签,因此对于更一般的情况,我使用了以下代码:
from boltons.setutils import IndexedSet
cols = list(IndexedSet(df.columns.tolist()) - set(['mean', 'std']))
cols[0:0] =['mean', 'std']
df = df[cols]
希望这对搜索此线程以寻求通用解决方案的任何人都有用。
DataFrame.sort_index(axis=1)非常干净。请在此处检查文档。然后凹入
我尝试了创建一个order函数,您可以使用Stata的order命令对列进行重新排序/移动。最好创建一个py文件(其名称可能是order.py),并将其保存在目录中并调用它的函数
def order(dataframe,cols,f_or_l=None,before=None, after=None):
#만든이: 김완석, Stata로 뚝딱뚝딱 저자, blog.naver.com/sanzo213 운영
# 갖다 쓰시거나 수정을 하셔도 되지만 출처는 꼭 밝혀주세요
# cols옵션 및 befor/after옵션에 튜플이 가능하게끔 수정했으며, 오류문구 수정함(2021.07.12,1)
# 칼럼이 멀티인덱스인 상태에서 reset_index()메소드 사용했을 시 적용안되는 걸 수정함(2021.07.12,2)
import pandas as pd
if (type(cols)==str) or (type(cols)==int) or (type(cols)==float) or (type(cols)==bool) or type(cols)==tuple:
cols=[cols]
dd=list(dataframe.columns)
for i in cols:
i
dd.remove(i) #cols요소를 제거함
if (f_or_l==None) & ((before==None) & (after==None)):
print('f_or_l옵션을 쓰시거나 아니면 before옵션/after옵션 쓰셔야되요')
if ((f_or_l=='first') or (f_or_l=='last')) & ~((before==None) & (after==None)):
print('f_or_l옵션 사용시 before after 옵션 사용불가입니다.')
if (f_or_l=='first') & (before==None) & (after==None):
new_order=cols+dd
dataframe=dataframe[new_order]
return dataframe
if (f_or_l=='last') & (before==None) & (after==None):
new_order=dd+cols
dataframe=dataframe[new_order]
return dataframe
if (before!=None) & (after!=None):
print('before옵션 after옵션 둘다 쓸 수 없습니다.')
if (before!=None) & (after==None) & (f_or_l==None):
if not((type(before)==str) or (type(before)==int) or (type(before)==float) or
(type(before)==bool) or ((type(before)!=list)) or
((type(before)==tuple))):
print('before옵션은 칼럼 하나만 입력가능하며 리스트 형태로도 입력하지 마세요.')
else:
b=dd[:dd.index(before)]
a=dd[dd.index(before):]
new_order=b+cols+a
dataframe=dataframe[new_order]
return dataframe
if (after!=None) & (before==None) & (f_or_l==None):
if not((type(after)==str) or (type(after)==int) or (type(after)==float) or
(type(after)==bool) or ((type(after)!=list)) or
((type(after)==tuple))):
print('after옵션은 칼럼 하나만 입력가능하며 리스트 형태로도 입력하지 마세요.')
else:
b=dd[:dd.index(after)+1]
a=dd[dd.index(after)+1:]
new_order=b+cols+a
dataframe=dataframe[new_order]
return dataframe
下面的python代码是我制作的order函数的一个示例。我希望您可以使用我的order函数轻松地对列进行重新排序:)
# module
import pandas as pd
import numpy as np
from order import order # call order function from order.py file
# make a dataset
columns='a b c d e f g h i j k'.split()
dic={}
n=-1
for i in columns:
n+=1
dic[i]=list(range(1+n,10+1+n))
data=pd.DataFrame(dic)
print(data)
# use order function (1) : order column e in the first
data2=order(data,'e',f_or_l='first')
print(data2)
# use order function (2): order column e in the last , "data" dataframe
print(order(data,'e',f_or_l='last'))
# use order function (3) : order column i before column c in "data" dataframe
print(order(data,'i',before='c'))
# use order function (4) : order column g after column b in "data" dataframe
print(order(data,'g',after='b'))
# use order function (4) : order columns ['c', 'd', 'e'] after column i in "data" dataframe
print(order(data,['c', 'd', 'e'],after='i'))
这里有一个函数可以对任意数量的列执行此操作。
def mean_first(df):
ncols = df.shape[1] # Get the number of columns
index = list(range(ncols)) # Create an index to reorder the columns
index.insert(0,ncols) # This puts the last column at the front
return(df.assign(mean=df.mean(1)).iloc[:,index]) # new df with last column (mean) first
您可以使用可用于两个轴的重新索引:
df
# 0 1 2 3 4 mean
# 0 0.943825 0.202490 0.071908 0.452985 0.678397 0.469921
# 1 0.745569 0.103029 0.268984 0.663710 0.037813 0.363821
# 2 0.693016 0.621525 0.031589 0.956703 0.118434 0.484254
# 3 0.284922 0.527293 0.791596 0.243768 0.629102 0.495336
# 4 0.354870 0.113014 0.326395 0.656415 0.172445 0.324628
# 5 0.815584 0.532382 0.195437 0.829670 0.019001 0.478415
# 6 0.944587 0.068690 0.811771 0.006846 0.698785 0.506136
# 7 0.595077 0.437571 0.023520 0.772187 0.862554 0.538182
# 8 0.700771 0.413958 0.097996 0.355228 0.656919 0.444974
# 9 0.263138 0.906283 0.121386 0.624336 0.859904 0.555009
df.reindex(['mean', *range(5)], axis=1)
# mean 0 1 2 3 4
# 0 0.469921 0.943825 0.202490 0.071908 0.452985 0.678397
# 1 0.363821 0.745569 0.103029 0.268984 0.663710 0.037813
# 2 0.484254 0.693016 0.621525 0.031589 0.956703 0.118434
# 3 0.495336 0.284922 0.527293 0.791596 0.243768 0.629102
# 4 0.324628 0.354870 0.113014 0.326395 0.656415 0.172445
# 5 0.478415 0.815584 0.532382 0.195437 0.829670 0.019001
# 6 0.506136 0.944587 0.068690 0.811771 0.006846 0.698785
# 7 0.538182 0.595077 0.437571 0.023520 0.772187 0.862554
# 8 0.444974 0.700771 0.413958 0.097996 0.355228 0.656919
# 9 0.555009 0.263138 0.906283 0.121386 0.624336 0.859904