我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
当前回答
您需要按所需的顺序创建一个新的列列表,然后使用df=df[cols]以新的顺序重新排列列。
cols = ['mean'] + [col for col in df if col != 'mean']
df = df[cols]
您也可以使用更通用的方法。在本例中,最后一列(由-1表示)作为第一列插入。
cols = [df.columns[-1]] + [col for col in df if col != df.columns[-1]]
df = df[cols]
如果DataFrame中存在列,也可以使用此方法按所需顺序重新排序列。
inserted_cols = ['a', 'b', 'c']
cols = ([col for col in inserted_cols if col in df]
+ [col for col in df if col not in inserted_cols])
df = df[cols]
其他回答
你也可以这样做:
df = df[['mean', '0', '1', '2', '3']]
您可以通过以下方式获取列列表:
cols = list(df.columns.values)
输出将产生:
['0', '1', '2', '3', 'mean']
…然后,在将其放入第一个函数之前,可以手动重新排列
我很喜欢Shoresh的回答:当你不知道位置时,使用集合功能来删除列,但这不符合我的目的,因为我需要保持原始的列顺序(具有任意的列标签)。
不过,我通过使用boltons包中的IndexedSet实现了这一点。
我还需要重新添加多个列标签,因此对于更一般的情况,我使用了以下代码:
from boltons.setutils import IndexedSet
cols = list(IndexedSet(df.columns.tolist()) - set(['mean', 'std']))
cols[0:0] =['mean', 'std']
df = df[cols]
希望这对搜索此线程以寻求通用解决方案的任何人都有用。
简单地说,
df = df[['mean'] + df.columns[:-1].tolist()]
使用T怎么样?
df = df.T.reindex(['mean', 0, 1, 2, 3, 4]).T
这里有一种移动一个现有列的方法,它将修改现有的数据帧。
my_column = df.pop('column name')
df.insert(3, my_column.name, my_column) # Is in-place