我有以下DataFrame(df):

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))

我通过分配添加更多列:

df['mean'] = df.mean(1)

如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?


当前回答

您需要按所需的顺序创建一个新的列列表,然后使用df=df[cols]以新的顺序重新排列列。

cols = ['mean']  + [col for col in df if col != 'mean']
df = df[cols]

您也可以使用更通用的方法。在本例中,最后一列(由-1表示)作为第一列插入。

cols = [df.columns[-1]] + [col for col in df if col != df.columns[-1]]
df = df[cols]

如果DataFrame中存在列,也可以使用此方法按所需顺序重新排序列。

inserted_cols = ['a', 'b', 'c']
cols = ([col for col in inserted_cols if col in df] 
        + [col for col in df if col not in inserted_cols])
df = df[cols]

其他回答

如果列名太长,无法键入,则可以通过整数列表指定新顺序,其中包含以下位置:

数据:

          0         1         2         3         4      mean
0  0.397312  0.361846  0.719802  0.575223  0.449205  0.500678
1  0.287256  0.522337  0.992154  0.584221  0.042739  0.485741
2  0.884812  0.464172  0.149296  0.167698  0.793634  0.491923
3  0.656891  0.500179  0.046006  0.862769  0.651065  0.543382
4  0.673702  0.223489  0.438760  0.468954  0.308509  0.422683
5  0.764020  0.093050  0.100932  0.572475  0.416471  0.389390
6  0.259181  0.248186  0.626101  0.556980  0.559413  0.449972
7  0.400591  0.075461  0.096072  0.308755  0.157078  0.207592
8  0.639745  0.368987  0.340573  0.997547  0.011892  0.471749
9  0.050582  0.714160  0.168839  0.899230  0.359690  0.438500

通用示例:

new_order = [3,2,1,4,5,0]
print(df[df.columns[new_order]])  

          3         2         1         4      mean         0
0  0.575223  0.719802  0.361846  0.449205  0.500678  0.397312
1  0.584221  0.992154  0.522337  0.042739  0.485741  0.287256
2  0.167698  0.149296  0.464172  0.793634  0.491923  0.884812
3  0.862769  0.046006  0.500179  0.651065  0.543382  0.656891
4  0.468954  0.438760  0.223489  0.308509  0.422683  0.673702
5  0.572475  0.100932  0.093050  0.416471  0.389390  0.764020
6  0.556980  0.626101  0.248186  0.559413  0.449972  0.259181
7  0.308755  0.096072  0.075461  0.157078  0.207592  0.400591
8  0.997547  0.340573  0.368987  0.011892  0.471749  0.639745
9  0.899230  0.168839  0.714160  0.359690  0.438500  0.050582

虽然看起来我只是以不同的顺序显式键入列名,但列“mean”的事实应该清楚地表明,new_order与实际位置相关,而不是列名。

对于OP问题的具体情况:

new_order = [-1,0,1,2,3,4]
df = df[df.columns[new_order]]
print(df)

       mean         0         1         2         3         4
0  0.500678  0.397312  0.361846  0.719802  0.575223  0.449205
1  0.485741  0.287256  0.522337  0.992154  0.584221  0.042739
2  0.491923  0.884812  0.464172  0.149296  0.167698  0.793634
3  0.543382  0.656891  0.500179  0.046006  0.862769  0.651065
4  0.422683  0.673702  0.223489  0.438760  0.468954  0.308509
5  0.389390  0.764020  0.093050  0.100932  0.572475  0.416471
6  0.449972  0.259181  0.248186  0.626101  0.556980  0.559413
7  0.207592  0.400591  0.075461  0.096072  0.308755  0.157078
8  0.471749  0.639745  0.368987  0.340573  0.997547  0.011892
9  0.438500  0.050582  0.714160  0.168839  0.899230  0.359690

这种方法的主要问题是多次调用同一代码将每次产生不同的结果,因此需要小心:)

在您的情况下,

df = df.reindex(columns=['mean',0,1,2,3,4])

会做你想做的事。

在我的情况下(一般形式):

df = df.reindex(columns=sorted(df.columns))
df = df.reindex(columns=(['opened'] + list([a for a in df.columns if a != 'opened']) ))

简单地说,

df = df[['mean'] + df.columns[:-1].tolist()]

我认为这个函数更简单。您只需在开始或结束处或同时指定列的子集:

def reorder_df_columns(df, start=None, end=None):
    """
        This function reorder columns of a DataFrame.
        It takes columns given in the list `start` and move them to the left.
        Its also takes columns in `end` and move them to the right.
    """
    if start is None:
        start = []
    if end is None:
        end = []
    assert isinstance(start, list) and isinstance(end, list)
    cols = list(df.columns)
    for c in start:
        if c not in cols:
            start.remove(c)
    for c in end:
        if c not in cols or c in start:
            end.remove(c)
    for c in start + end:
        cols.remove(c)
    cols = start + cols + end
    return df[cols]

我很喜欢Shoresh的回答:当你不知道位置时,使用集合功能来删除列,但这不符合我的目的,因为我需要保持原始的列顺序(具有任意的列标签)。

不过,我通过使用boltons包中的IndexedSet实现了这一点。

我还需要重新添加多个列标签,因此对于更一般的情况,我使用了以下代码:

from boltons.setutils import IndexedSet
cols = list(IndexedSet(df.columns.tolist()) - set(['mean', 'std']))
cols[0:0] =['mean', 'std']
df = df[cols]

希望这对搜索此线程以寻求通用解决方案的任何人都有用。