我有以下DataFrame(df):

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))

我通过分配添加更多列:

df['mean'] = df.mean(1)

如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?


当前回答

你也可以这样做:

df = df[['mean', '0', '1', '2', '3']]

您可以通过以下方式获取列列表:

cols = list(df.columns.values)

输出将产生:

['0', '1', '2', '3', 'mean']

…然后,在将其放入第一个函数之前,可以手动重新排列

其他回答

使用T怎么样?

df = df.T.reindex(['mean', 0, 1, 2, 3, 4]).T

您需要按所需的顺序创建一个新的列列表,然后使用df=df[cols]以新的顺序重新排列列。

cols = ['mean']  + [col for col in df if col != 'mean']
df = df[cols]

您也可以使用更通用的方法。在本例中,最后一列(由-1表示)作为第一列插入。

cols = [df.columns[-1]] + [col for col in df if col != df.columns[-1]]
df = df[cols]

如果DataFrame中存在列,也可以使用此方法按所需顺序重新排序列。

inserted_cols = ['a', 'b', 'c']
cols = ([col for col in inserted_cols if col in df] 
        + [col for col in df if col not in inserted_cols])
df = df[cols]

我想在一个数据帧前面加上两列,我不知道所有列的确切名称,因为它们是从之前的pivot语句生成的。所以,如果你也遇到同样的情况:把你知道名字的列放在前面,然后让它们跟着“所有其他列”,我提出了以下一般解决方案:

df = df.reindex_axis(['Col1','Col2'] + list(df.columns.drop(['Col1','Col2'])), axis=1)

仅仅是翻转往往会有帮助。

df[df.columns[::-1]]

或者只是洗牌看看。

import random
cols = list(df.columns)
random.shuffle(cols)
df[cols]

对我来说,一个非常简单的解决方案是在df.columns上使用.rendex:

df = df[df.columns.reindex(['mean', 0, 1, 2, 3, 4])[0]]