我有以下DataFrame(df):

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))

我通过分配添加更多列:

df['mean'] = df.mean(1)

如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?


当前回答

使用T怎么样?

df = df.T.reindex(['mean', 0, 1, 2, 3, 4]).T

其他回答

我想在一个数据帧前面加上两列,我不知道所有列的确切名称,因为它们是从之前的pivot语句生成的。所以,如果你也遇到同样的情况:把你知道名字的列放在前面,然后让它们跟着“所有其他列”,我提出了以下一般解决方案:

df = df.reindex_axis(['Col1','Col2'] + list(df.columns.drop(['Col1','Col2'])), axis=1)

我认为这个函数更简单。您只需在开始或结束处或同时指定列的子集:

def reorder_df_columns(df, start=None, end=None):
    """
        This function reorder columns of a DataFrame.
        It takes columns given in the list `start` and move them to the left.
        Its also takes columns in `end` and move them to the right.
    """
    if start is None:
        start = []
    if end is None:
        end = []
    assert isinstance(start, list) and isinstance(end, list)
    cols = list(df.columns)
    for c in start:
        if c not in cols:
            start.remove(c)
    for c in end:
        if c not in cols or c in start:
            end.remove(c)
    for c in start + end:
        cols.remove(c)
    cols = start + cols + end
    return df[cols]

我自己也遇到了一个类似的问题,只是想补充一下我已经解决的问题。我喜欢用于更改列顺序的reindex_axis()方法。这是有效的:

df = df.reindex_axis(['mean'] + list(df.columns[:-1]), axis=1)

另一种基于@Jorge评论的方法:

df = df.reindex(columns=['mean'] + list(df.columns[:-1]))

虽然reindex_axis在微基准测试中似乎比reindex稍快,但我认为我更喜欢后者,因为它的直接性。

与上面的答案类似,还有一种方法可以使用deque()及其rotate()方法。rotate方法获取列表中的最后一个元素并将其插入开头:

from collections import deque

columns = deque(df.columns.tolist())
columns.rotate()

df = df[columns]

对我来说,一个非常简单的解决方案是在df.columns上使用.rendex:

df = df[df.columns.reindex(['mean', 0, 1, 2, 3, 4])[0]]