我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
当前回答
书中最黑客的方法
df.insert(0, "test", df["mean"])
df = df.drop(columns=["mean"]).rename(columns={"test": "mean"})
其他回答
我认为这个函数更简单。您只需在开始或结束处或同时指定列的子集:
def reorder_df_columns(df, start=None, end=None):
"""
This function reorder columns of a DataFrame.
It takes columns given in the list `start` and move them to the left.
Its also takes columns in `end` and move them to the right.
"""
if start is None:
start = []
if end is None:
end = []
assert isinstance(start, list) and isinstance(end, list)
cols = list(df.columns)
for c in start:
if c not in cols:
start.remove(c)
for c in end:
if c not in cols or c in start:
end.remove(c)
for c in start + end:
cols.remove(c)
cols = start + cols + end
return df[cols]
你也可以这样做:
df = df[['mean', '0', '1', '2', '3']]
您可以通过以下方式获取列列表:
cols = list(df.columns.values)
输出将产生:
['0', '1', '2', '3', 'mean']
…然后,在将其放入第一个函数之前,可以手动重新排列
大多数答案都不够概括,panda reindex_axis方法有点乏味,因此我提供了一个简单的函数,可以使用字典将任意数量的列移动到任意位置,其中key=列名,value=要移动到的位置。如果数据帧很大,请将True传递给“big_data”,那么函数将返回有序的列列表。您可以使用此列表来分割数据。
def order_column(df, columns, big_data = False):
"""Re-Orders dataFrame column(s)
Parameters :
df -- dataframe
columns -- a dictionary:
key = current column position/index or column name
value = position to move it to
big_data -- boolean
True = returns only the ordered columns as a list
the user user can then slice the data using this
ordered column
False = default - return a copy of the dataframe
"""
ordered_col = df.columns.tolist()
for key, value in columns.items():
ordered_col.remove(key)
ordered_col.insert(value, key)
if big_data:
return ordered_col
return df[ordered_col]
# e.g.
df = pd.DataFrame({'chicken wings': np.random.rand(10, 1).flatten(), 'taco': np.random.rand(10,1).flatten(),
'coffee': np.random.rand(10, 1).flatten()})
df['mean'] = df.mean(1)
df = order_column(df, {'mean': 0, 'coffee':1 })
>>>
col = order_column(df, {'mean': 0, 'coffee':1 }, True)
col
>>>
['mean', 'coffee', 'chicken wings', 'taco']
# you could grab it by doing this
df = df[col]
与上面的答案类似,还有一种方法可以使用deque()及其rotate()方法。rotate方法获取列表中的最后一个元素并将其插入开头:
from collections import deque
columns = deque(df.columns.tolist())
columns.rotate()
df = df[columns]
这里有一个非常简单的答案(只有一行)。
在将“n”列添加到df中之后,可以执行以下操作。
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
df['mean'] = df.mean(1)
df
0 1 2 3 4 mean
0 0.929616 0.316376 0.183919 0.204560 0.567725 0.440439
1 0.595545 0.964515 0.653177 0.748907 0.653570 0.723143
2 0.747715 0.961307 0.008388 0.106444 0.298704 0.424512
3 0.656411 0.809813 0.872176 0.964648 0.723685 0.805347
4 0.642475 0.717454 0.467599 0.325585 0.439645 0.518551
5 0.729689 0.994015 0.676874 0.790823 0.170914 0.672463
6 0.026849 0.800370 0.903723 0.024676 0.491747 0.449473
7 0.526255 0.596366 0.051958 0.895090 0.728266 0.559587
8 0.818350 0.500223 0.810189 0.095969 0.218950 0.488736
9 0.258719 0.468106 0.459373 0.709510 0.178053 0.414752
### here you can add below line and it should work
# Don't forget the two (()) 'brackets' around columns names.Otherwise, it'll give you an error.
df = df[list(('mean',0, 1, 2,3,4))]
df
mean 0 1 2 3 4
0 0.440439 0.929616 0.316376 0.183919 0.204560 0.567725
1 0.723143 0.595545 0.964515 0.653177 0.748907 0.653570
2 0.424512 0.747715 0.961307 0.008388 0.106444 0.298704
3 0.805347 0.656411 0.809813 0.872176 0.964648 0.723685
4 0.518551 0.642475 0.717454 0.467599 0.325585 0.439645
5 0.672463 0.729689 0.994015 0.676874 0.790823 0.170914
6 0.449473 0.026849 0.800370 0.903723 0.024676 0.491747
7 0.559587 0.526255 0.596366 0.051958 0.895090 0.728266
8 0.488736 0.818350 0.500223 0.810189 0.095969 0.218950
9 0.414752 0.258719 0.468106 0.459373 0.709510 0.178053