我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
当前回答
书中最黑客的方法
df.insert(0, "test", df["mean"])
df = df.drop(columns=["mean"]).rename(columns={"test": "mean"})
其他回答
使用T怎么样?
df = df.T.reindex(['mean', 0, 1, 2, 3, 4]).T
我自己也遇到了一个类似的问题,只是想补充一下我已经解决的问题。我喜欢用于更改列顺序的reindex_axis()方法。这是有效的:
df = df.reindex_axis(['mean'] + list(df.columns[:-1]), axis=1)
另一种基于@Jorge评论的方法:
df = df.reindex(columns=['mean'] + list(df.columns[:-1]))
虽然reindex_axis在微基准测试中似乎比reindex稍快,但我认为我更喜欢后者,因为它的直接性。
下面是一个超级简单的方法示例。如果您要从excel复制标题,请使用.split('\t')
df = df['FILE_NAME DISPLAY_PATH SHAREPOINT_PATH RETAILER LAST_UPDATE'.split()]
我想到了和Dmitriy Work一样的答案,显然是最简单的:
df["mean"] = df.mean(1)
l = list(np.arange(0,len(df.columns) -1 ))
l.insert(0,-1)
df.iloc[:,l]
书中最黑客的方法
df.insert(0, "test", df["mean"])
df = df.drop(columns=["mean"]).rename(columns={"test": "mean"})