我有以下DataFrame(df):

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))

我通过分配添加更多列:

df['mean'] = df.mean(1)

如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?


当前回答

一种简单的方法是使用set(),特别是当您有一长串列并且不想手动处理它们时:

cols = list(set(df.columns.tolist()) - set(['mean']))
cols.insert(0, 'mean')
df = df[cols]

其他回答

大多数答案都不够概括,panda reindex_axis方法有点乏味,因此我提供了一个简单的函数,可以使用字典将任意数量的列移动到任意位置,其中key=列名,value=要移动到的位置。如果数据帧很大,请将True传递给“big_data”,那么函数将返回有序的列列表。您可以使用此列表来分割数据。

def order_column(df, columns, big_data = False):

    """Re-Orders dataFrame column(s)
       Parameters : 
       df      -- dataframe
       columns -- a dictionary:
                  key   = current column position/index or column name
                  value = position to move it to  
       big_data -- boolean 
                  True = returns only the ordered columns as a list
                          the user user can then slice the data using this
                          ordered column
                  False = default - return a copy of the dataframe
    """
    ordered_col = df.columns.tolist()

    for key, value in columns.items():

        ordered_col.remove(key)
        ordered_col.insert(value, key)

    if big_data:

        return ordered_col

    return df[ordered_col]

# e.g.
df = pd.DataFrame({'chicken wings': np.random.rand(10, 1).flatten(), 'taco': np.random.rand(10,1).flatten(),
                          'coffee': np.random.rand(10, 1).flatten()})
df['mean'] = df.mean(1)

df = order_column(df, {'mean': 0, 'coffee':1 })

>>>

col = order_column(df, {'mean': 0, 'coffee':1 }, True)

col
>>>
['mean', 'coffee', 'chicken wings', 'taco']

# you could grab it by doing this

df = df[col]

在您的情况下,

df = df.reindex(columns=['mean',0,1,2,3,4])

会做你想做的事。

在我的情况下(一般形式):

df = df.reindex(columns=sorted(df.columns))
df = df.reindex(columns=(['opened'] + list([a for a in df.columns if a != 'opened']) ))

对我来说,一个非常简单的解决方案是在df.columns上使用.rendex:

df = df[df.columns.reindex(['mean', 0, 1, 2, 3, 4])[0]]

我想到了和Dmitriy Work一样的答案,显然是最简单的:

df["mean"] = df.mean(1)
l =  list(np.arange(0,len(df.columns) -1 ))
l.insert(0,-1)
df.iloc[:,l]

熊猫>=1.3(2022年编辑):

df.insert(0, 'mean', df.pop('mean'))

怎么样(对于熊猫<1.3,原始答案)

df.insert(0, 'mean', df['mean'])

https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#column-选择添加删除