我有以下DataFrame(df):

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))

我通过分配添加更多列:

df['mean'] = df.mean(1)

如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?


当前回答

此函数避免了您只需列出数据集中的每个变量来对其中的几个变量进行排序。

def order(frame,var):
    if type(var) is str:
        var = [var] #let the command take a string or list
    varlist =[w for w in frame.columns if w not in var]
    frame = frame[var+varlist]
    return frame 

它需要两个参数,第一个是数据集,第二个是要放到前面的数据集中的列。

所以在我的例子中,我有一个名为Frame的数据集,其中包含变量A1、A2、B1、B2、Total和Date。如果我想把道达尔带到前面,那么我所要做的就是:

frame = order(frame,['Total'])

如果我想将Total和Date带到前台,那么我会:

frame = order(frame,['Total','Date'])

编辑:

另一种有用的使用方法是,如果您有一个不熟悉的表,并且正在查找其中包含特定术语的变量,例如VAR1、VAR2,。。。您可以执行以下操作:

frame = order(frame,[v for v in frame.columns if "VAR" in v])

其他回答

这个问题以前已经回答过,但reindex_axis现在已被弃用,因此我建议使用:

df = df.reindex(sorted(df.columns), axis=1)

对于那些想要指定他们想要的顺序而不是仅仅对它们进行排序的人来说,下面列出了解决方案:

df = df.reindex(['the','order','you','want'], axis=1)

现在,如何对列名列表排序真的不是熊猫问题,而是Python列表操作问题。有很多方法可以做到这一点,我认为这个答案有一个非常简洁的方法。

我认为这是一个略为简洁的解决方案:

df.insert(0, 'mean', df.pop("mean"))

这个解决方案有点类似于@JoeHeffer的解决方案,但这是一条直线。

这里,我们从数据帧中删除列“mean”,并将其附加到具有相同列名的索引0。

一种简单的方法是用列列表重新分配数据帧,根据需要重新排列。

这就是你现在拥有的:

In [6]: df
Out[6]:
          0         1         2         3         4      mean
0  0.445598  0.173835  0.343415  0.682252  0.582616  0.445543
1  0.881592  0.696942  0.702232  0.696724  0.373551  0.670208
2  0.662527  0.955193  0.131016  0.609548  0.804694  0.632596
3  0.260919  0.783467  0.593433  0.033426  0.512019  0.436653
4  0.131842  0.799367  0.182828  0.683330  0.019485  0.363371
5  0.498784  0.873495  0.383811  0.699289  0.480447  0.587165
6  0.388771  0.395757  0.745237  0.628406  0.784473  0.588529
7  0.147986  0.459451  0.310961  0.706435  0.100914  0.345149
8  0.394947  0.863494  0.585030  0.565944  0.356561  0.553195
9  0.689260  0.865243  0.136481  0.386582  0.730399  0.561593

In [7]: cols = df.columns.tolist()

In [8]: cols
Out[8]: [0L, 1L, 2L, 3L, 4L, 'mean']

按任意方式重新排列列。这是我将最后一个元素移动到第一个位置的方式:

In [12]: cols = cols[-1:] + cols[:-1]

In [13]: cols
Out[13]: ['mean', 0L, 1L, 2L, 3L, 4L]

然后重新排序数据帧,如下所示:

In [16]: df = df[cols]  #    OR    df = df.ix[:, cols]

In [17]: df
Out[17]:
       mean         0         1         2         3         4
0  0.445543  0.445598  0.173835  0.343415  0.682252  0.582616
1  0.670208  0.881592  0.696942  0.702232  0.696724  0.373551
2  0.632596  0.662527  0.955193  0.131016  0.609548  0.804694
3  0.436653  0.260919  0.783467  0.593433  0.033426  0.512019
4  0.363371  0.131842  0.799367  0.182828  0.683330  0.019485
5  0.587165  0.498784  0.873495  0.383811  0.699289  0.480447
6  0.588529  0.388771  0.395757  0.745237  0.628406  0.784473
7  0.345149  0.147986  0.459451  0.310961  0.706435  0.100914
8  0.553195  0.394947  0.863494  0.585030  0.565944  0.356561
9  0.561593  0.689260  0.865243  0.136481  0.386582  0.730399

DataFrame.sort_index(axis=1)非常干净。请在此处检查文档。然后凹入

简单地说,

df = df[['mean'] + df.columns[:-1].tolist()]