我有以下DataFrame(df):

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))

我通过分配添加更多列:

df['mean'] = df.mean(1)

如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?


当前回答

在您的情况下,

df = df.reindex(columns=['mean',0,1,2,3,4])

会做你想做的事。

在我的情况下(一般形式):

df = df.reindex(columns=sorted(df.columns))
df = df.reindex(columns=(['opened'] + list([a for a in df.columns if a != 'opened']) ))

其他回答

DataFrame.sort_index(axis=1)非常干净。请在此处检查文档。然后凹入

书中最黑客的方法

df.insert(0, "test", df["mean"])
df = df.drop(columns=["mean"]).rename(columns={"test": "mean"})

您可以使用可用于两个轴的重新索引:

df
#           0         1         2         3         4      mean
# 0  0.943825  0.202490  0.071908  0.452985  0.678397  0.469921
# 1  0.745569  0.103029  0.268984  0.663710  0.037813  0.363821
# 2  0.693016  0.621525  0.031589  0.956703  0.118434  0.484254
# 3  0.284922  0.527293  0.791596  0.243768  0.629102  0.495336
# 4  0.354870  0.113014  0.326395  0.656415  0.172445  0.324628
# 5  0.815584  0.532382  0.195437  0.829670  0.019001  0.478415
# 6  0.944587  0.068690  0.811771  0.006846  0.698785  0.506136
# 7  0.595077  0.437571  0.023520  0.772187  0.862554  0.538182
# 8  0.700771  0.413958  0.097996  0.355228  0.656919  0.444974
# 9  0.263138  0.906283  0.121386  0.624336  0.859904  0.555009

df.reindex(['mean', *range(5)], axis=1)

#        mean         0         1         2         3         4
# 0  0.469921  0.943825  0.202490  0.071908  0.452985  0.678397
# 1  0.363821  0.745569  0.103029  0.268984  0.663710  0.037813
# 2  0.484254  0.693016  0.621525  0.031589  0.956703  0.118434
# 3  0.495336  0.284922  0.527293  0.791596  0.243768  0.629102
# 4  0.324628  0.354870  0.113014  0.326395  0.656415  0.172445
# 5  0.478415  0.815584  0.532382  0.195437  0.829670  0.019001
# 6  0.506136  0.944587  0.068690  0.811771  0.006846  0.698785
# 7  0.538182  0.595077  0.437571  0.023520  0.772187  0.862554
# 8  0.444974  0.700771  0.413958  0.097996  0.355228  0.656919
# 9  0.555009  0.263138  0.906283  0.121386  0.624336  0.859904

你也可以这样做:

df = df[['mean', '0', '1', '2', '3']]

您可以通过以下方式获取列列表:

cols = list(df.columns.values)

输出将产生:

['0', '1', '2', '3', 'mean']

…然后,在将其放入第一个函数之前,可以手动重新排列

只需按所需顺序分配列名:

In [39]: df
Out[39]: 
          0         1         2         3         4  mean
0  0.172742  0.915661  0.043387  0.712833  0.190717     1
1  0.128186  0.424771  0.590779  0.771080  0.617472     1
2  0.125709  0.085894  0.989798  0.829491  0.155563     1
3  0.742578  0.104061  0.299708  0.616751  0.951802     1
4  0.721118  0.528156  0.421360  0.105886  0.322311     1
5  0.900878  0.082047  0.224656  0.195162  0.736652     1
6  0.897832  0.558108  0.318016  0.586563  0.507564     1
7  0.027178  0.375183  0.930248  0.921786  0.337060     1
8  0.763028  0.182905  0.931756  0.110675  0.423398     1
9  0.848996  0.310562  0.140873  0.304561  0.417808     1

In [40]: df = df[['mean', 4,3,2,1]]

现在,“mean”列出现在前面:

In [41]: df
Out[41]: 
   mean         4         3         2         1
0     1  0.190717  0.712833  0.043387  0.915661
1     1  0.617472  0.771080  0.590779  0.424771
2     1  0.155563  0.829491  0.989798  0.085894
3     1  0.951802  0.616751  0.299708  0.104061
4     1  0.322311  0.105886  0.421360  0.528156
5     1  0.736652  0.195162  0.224656  0.082047
6     1  0.507564  0.586563  0.318016  0.558108
7     1  0.337060  0.921786  0.930248  0.375183
8     1  0.423398  0.110675  0.931756  0.182905
9     1  0.417808  0.304561  0.140873  0.310562