我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
当前回答
如果列名太长,无法键入,则可以通过整数列表指定新顺序,其中包含以下位置:
数据:
0 1 2 3 4 mean
0 0.397312 0.361846 0.719802 0.575223 0.449205 0.500678
1 0.287256 0.522337 0.992154 0.584221 0.042739 0.485741
2 0.884812 0.464172 0.149296 0.167698 0.793634 0.491923
3 0.656891 0.500179 0.046006 0.862769 0.651065 0.543382
4 0.673702 0.223489 0.438760 0.468954 0.308509 0.422683
5 0.764020 0.093050 0.100932 0.572475 0.416471 0.389390
6 0.259181 0.248186 0.626101 0.556980 0.559413 0.449972
7 0.400591 0.075461 0.096072 0.308755 0.157078 0.207592
8 0.639745 0.368987 0.340573 0.997547 0.011892 0.471749
9 0.050582 0.714160 0.168839 0.899230 0.359690 0.438500
通用示例:
new_order = [3,2,1,4,5,0]
print(df[df.columns[new_order]])
3 2 1 4 mean 0
0 0.575223 0.719802 0.361846 0.449205 0.500678 0.397312
1 0.584221 0.992154 0.522337 0.042739 0.485741 0.287256
2 0.167698 0.149296 0.464172 0.793634 0.491923 0.884812
3 0.862769 0.046006 0.500179 0.651065 0.543382 0.656891
4 0.468954 0.438760 0.223489 0.308509 0.422683 0.673702
5 0.572475 0.100932 0.093050 0.416471 0.389390 0.764020
6 0.556980 0.626101 0.248186 0.559413 0.449972 0.259181
7 0.308755 0.096072 0.075461 0.157078 0.207592 0.400591
8 0.997547 0.340573 0.368987 0.011892 0.471749 0.639745
9 0.899230 0.168839 0.714160 0.359690 0.438500 0.050582
虽然看起来我只是以不同的顺序显式键入列名,但列“mean”的事实应该清楚地表明,new_order与实际位置相关,而不是列名。
对于OP问题的具体情况:
new_order = [-1,0,1,2,3,4]
df = df[df.columns[new_order]]
print(df)
mean 0 1 2 3 4
0 0.500678 0.397312 0.361846 0.719802 0.575223 0.449205
1 0.485741 0.287256 0.522337 0.992154 0.584221 0.042739
2 0.491923 0.884812 0.464172 0.149296 0.167698 0.793634
3 0.543382 0.656891 0.500179 0.046006 0.862769 0.651065
4 0.422683 0.673702 0.223489 0.438760 0.468954 0.308509
5 0.389390 0.764020 0.093050 0.100932 0.572475 0.416471
6 0.449972 0.259181 0.248186 0.626101 0.556980 0.559413
7 0.207592 0.400591 0.075461 0.096072 0.308755 0.157078
8 0.471749 0.639745 0.368987 0.340573 0.997547 0.011892
9 0.438500 0.050582 0.714160 0.168839 0.899230 0.359690
这种方法的主要问题是多次调用同一代码将每次产生不同的结果,因此需要小心:)
其他回答
你也可以这样做:
df = df[['mean', '0', '1', '2', '3']]
您可以通过以下方式获取列列表:
cols = list(df.columns.values)
输出将产生:
['0', '1', '2', '3', 'mean']
…然后,在将其放入第一个函数之前,可以手动重新排列
您需要按所需的顺序创建一个新的列列表,然后使用df=df[cols]以新的顺序重新排列列。
cols = ['mean'] + [col for col in df if col != 'mean']
df = df[cols]
您也可以使用更通用的方法。在本例中,最后一列(由-1表示)作为第一列插入。
cols = [df.columns[-1]] + [col for col in df if col != df.columns[-1]]
df = df[cols]
如果DataFrame中存在列,也可以使用此方法按所需顺序重新排序列。
inserted_cols = ['a', 'b', 'c']
cols = ([col for col in inserted_cols if col in df]
+ [col for col in df if col not in inserted_cols])
df = df[cols]
只需按所需顺序分配列名:
In [39]: df
Out[39]:
0 1 2 3 4 mean
0 0.172742 0.915661 0.043387 0.712833 0.190717 1
1 0.128186 0.424771 0.590779 0.771080 0.617472 1
2 0.125709 0.085894 0.989798 0.829491 0.155563 1
3 0.742578 0.104061 0.299708 0.616751 0.951802 1
4 0.721118 0.528156 0.421360 0.105886 0.322311 1
5 0.900878 0.082047 0.224656 0.195162 0.736652 1
6 0.897832 0.558108 0.318016 0.586563 0.507564 1
7 0.027178 0.375183 0.930248 0.921786 0.337060 1
8 0.763028 0.182905 0.931756 0.110675 0.423398 1
9 0.848996 0.310562 0.140873 0.304561 0.417808 1
In [40]: df = df[['mean', 4,3,2,1]]
现在,“mean”列出现在前面:
In [41]: df
Out[41]:
mean 4 3 2 1
0 1 0.190717 0.712833 0.043387 0.915661
1 1 0.617472 0.771080 0.590779 0.424771
2 1 0.155563 0.829491 0.989798 0.085894
3 1 0.951802 0.616751 0.299708 0.104061
4 1 0.322311 0.105886 0.421360 0.528156
5 1 0.736652 0.195162 0.224656 0.082047
6 1 0.507564 0.586563 0.318016 0.558108
7 1 0.337060 0.921786 0.930248 0.375183
8 1 0.423398 0.110675 0.931756 0.182905
9 1 0.417808 0.304561 0.140873 0.310562
您可以使用可用于两个轴的重新索引:
df
# 0 1 2 3 4 mean
# 0 0.943825 0.202490 0.071908 0.452985 0.678397 0.469921
# 1 0.745569 0.103029 0.268984 0.663710 0.037813 0.363821
# 2 0.693016 0.621525 0.031589 0.956703 0.118434 0.484254
# 3 0.284922 0.527293 0.791596 0.243768 0.629102 0.495336
# 4 0.354870 0.113014 0.326395 0.656415 0.172445 0.324628
# 5 0.815584 0.532382 0.195437 0.829670 0.019001 0.478415
# 6 0.944587 0.068690 0.811771 0.006846 0.698785 0.506136
# 7 0.595077 0.437571 0.023520 0.772187 0.862554 0.538182
# 8 0.700771 0.413958 0.097996 0.355228 0.656919 0.444974
# 9 0.263138 0.906283 0.121386 0.624336 0.859904 0.555009
df.reindex(['mean', *range(5)], axis=1)
# mean 0 1 2 3 4
# 0 0.469921 0.943825 0.202490 0.071908 0.452985 0.678397
# 1 0.363821 0.745569 0.103029 0.268984 0.663710 0.037813
# 2 0.484254 0.693016 0.621525 0.031589 0.956703 0.118434
# 3 0.495336 0.284922 0.527293 0.791596 0.243768 0.629102
# 4 0.324628 0.354870 0.113014 0.326395 0.656415 0.172445
# 5 0.478415 0.815584 0.532382 0.195437 0.829670 0.019001
# 6 0.506136 0.944587 0.068690 0.811771 0.006846 0.698785
# 7 0.538182 0.595077 0.437571 0.023520 0.772187 0.862554
# 8 0.444974 0.700771 0.413958 0.097996 0.355228 0.656919
# 9 0.555009 0.263138 0.906283 0.121386 0.624336 0.859904
在您的情况下,
df = df.reindex(columns=['mean',0,1,2,3,4])
会做你想做的事。
在我的情况下(一般形式):
df = df.reindex(columns=sorted(df.columns))
df = df.reindex(columns=(['opened'] + list([a for a in df.columns if a != 'opened']) ))