我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
当前回答
另一种选择是使用set_index()方法,后跟reset_index()。请注意,我们首先pop()将要移动到数据帧前面的列,以便在重置索引时避免名称冲突:
df.set_index(df.pop('column_name'), inplace=True)
df.reset_index(inplace=True)
有关详细信息,请参阅How to change the order of dataframe columns in panda。
其他回答
我自己也遇到了一个类似的问题,只是想补充一下我已经解决的问题。我喜欢用于更改列顺序的reindex_axis()方法。这是有效的:
df = df.reindex_axis(['mean'] + list(df.columns[:-1]), axis=1)
另一种基于@Jorge评论的方法:
df = df.reindex(columns=['mean'] + list(df.columns[:-1]))
虽然reindex_axis在微基准测试中似乎比reindex稍快,但我认为我更喜欢后者,因为它的直接性。
我认为这个函数更简单。您只需在开始或结束处或同时指定列的子集:
def reorder_df_columns(df, start=None, end=None):
"""
This function reorder columns of a DataFrame.
It takes columns given in the list `start` and move them to the left.
Its also takes columns in `end` and move them to the right.
"""
if start is None:
start = []
if end is None:
end = []
assert isinstance(start, list) and isinstance(end, list)
cols = list(df.columns)
for c in start:
if c not in cols:
start.remove(c)
for c in end:
if c not in cols or c in start:
end.remove(c)
for c in start + end:
cols.remove(c)
cols = start + cols + end
return df[cols]
你也可以这样做:
df = df[['mean', '0', '1', '2', '3']]
您可以通过以下方式获取列列表:
cols = list(df.columns.values)
输出将产生:
['0', '1', '2', '3', 'mean']
…然后,在将其放入第一个函数之前,可以手动重新排列
书中最黑客的方法
df.insert(0, "test", df["mean"])
df = df.drop(columns=["mean"]).rename(columns={"test": "mean"})
将任意列移动到任意位置:
import pandas as pd
df = pd.DataFrame({"A": [1,2,3],
"B": [2,4,8],
"C": [5,5,5]})
cols = df.columns.tolist()
column_to_move = "C"
new_position = 1
cols.insert(new_position, cols.pop(cols.index(column_to_move)))
df = df[cols]