我有以下DataFrame(df):

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))

我通过分配添加更多列:

df['mean'] = df.mean(1)

如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?


当前回答

另一种选择是使用set_index()方法,后跟reset_index()。请注意,我们首先pop()将要移动到数据帧前面的列,以便在重置索引时避免名称冲突:

df.set_index(df.pop('column_name'), inplace=True)
df.reset_index(inplace=True)

有关详细信息,请参阅How to change the order of dataframe columns in panda。

其他回答

这个问题以前已经回答过,但reindex_axis现在已被弃用,因此我建议使用:

df = df.reindex(sorted(df.columns), axis=1)

对于那些想要指定他们想要的顺序而不是仅仅对它们进行排序的人来说,下面列出了解决方案:

df = df.reindex(['the','order','you','want'], axis=1)

现在,如何对列名列表排序真的不是熊猫问题,而是Python列表操作问题。有很多方法可以做到这一点,我认为这个答案有一个非常简洁的方法。

您可以使用一个集合,它是唯一元素的无序集合,以保持“其他列的顺序不变”:

other_columns = list(set(df.columns).difference(["mean"])) #[0, 1, 2, 3, 4]

然后,可以通过以下方式使用lambda将特定列移动到前面:

In [1]: import numpy as np                                                                               

In [2]: import pandas as pd                                                                              

In [3]: df = pd.DataFrame(np.random.rand(10, 5))                                                         

In [4]: df["mean"] = df.mean(1)                                                                          

In [5]: move_col_to_front = lambda df, col: df[[col]+list(set(df.columns).difference([col]))]            

In [6]: move_col_to_front(df, "mean")                                                                    
Out[6]: 
       mean         0         1         2         3         4
0  0.697253  0.600377  0.464852  0.938360  0.945293  0.537384
1  0.609213  0.703387  0.096176  0.971407  0.955666  0.319429
2  0.561261  0.791842  0.302573  0.662365  0.728368  0.321158
3  0.518720  0.710443  0.504060  0.663423  0.208756  0.506916
4  0.616316  0.665932  0.794385  0.163000  0.664265  0.793995
5  0.519757  0.585462  0.653995  0.338893  0.714782  0.305654
6  0.532584  0.434472  0.283501  0.633156  0.317520  0.994271
7  0.640571  0.732680  0.187151  0.937983  0.921097  0.423945
8  0.562447  0.790987  0.200080  0.317812  0.641340  0.862018
9  0.563092  0.811533  0.662709  0.396048  0.596528  0.348642

In [7]: move_col_to_front(df, 2)                                                                         
Out[7]: 
          2         0         1         3         4      mean
0  0.938360  0.600377  0.464852  0.945293  0.537384  0.697253
1  0.971407  0.703387  0.096176  0.955666  0.319429  0.609213
2  0.662365  0.791842  0.302573  0.728368  0.321158  0.561261
3  0.663423  0.710443  0.504060  0.208756  0.506916  0.518720
4  0.163000  0.665932  0.794385  0.664265  0.793995  0.616316
5  0.338893  0.585462  0.653995  0.714782  0.305654  0.519757
6  0.633156  0.434472  0.283501  0.317520  0.994271  0.532584
7  0.937983  0.732680  0.187151  0.921097  0.423945  0.640571
8  0.317812  0.790987  0.200080  0.641340  0.862018  0.562447
9  0.396048  0.811533  0.662709  0.596528  0.348642  0.563092
import numpy as np
import pandas as pd
df = pd.DataFrame()
column_names = ['x','y','z','mean']
for col in column_names: 
    df[col] = np.random.randint(0,100, size=10000)

您可以尝试以下解决方案:

解决方案1:

df = df[ ['mean'] + [ col for col in df.columns if col != 'mean' ] ]

解决方案2:


df = df[['mean', 'x', 'y', 'z']]

解决方案3:

col = df.pop("mean")
df = df.insert(0, col.name, col)

解决方案4:

df.set_index(df.columns[-1], inplace=True)
df.reset_index(inplace=True)

解决方案5:

cols = list(df)
cols = [cols[-1]] + cols[:-1]
df = df[cols]

解决方案6:

order = [1,2,3,0] # setting column's order
df = df[[df.columns[i] for i in order]]

时间比较:

解决方案1:

CPU时间:用户1.05 ms,sys:35µs,总计:1.08 ms壁时间:995µs

解决方案2:

CPU时间:用户933µs,系统:0 ns,总计:933µ壁时间:800µs

解决方案3:

CPU时间:用户0 ns,sys:1.35 ms,总计:1.35 ms壁时间:1.08 ms

解决方案4:

CPU时间:用户1.23毫秒,系统:45µs,总计:1.27毫秒壁时间:986µs

解决方案5:

CPU时间:用户1.09 ms,系统:19µs,总计:1.11 ms壁时间:949µs

解决方案6:

CPU时间:用户955µs,系统:34µs,总计:989µs壁时间:859µs

如果列名太长,无法键入,则可以通过整数列表指定新顺序,其中包含以下位置:

数据:

          0         1         2         3         4      mean
0  0.397312  0.361846  0.719802  0.575223  0.449205  0.500678
1  0.287256  0.522337  0.992154  0.584221  0.042739  0.485741
2  0.884812  0.464172  0.149296  0.167698  0.793634  0.491923
3  0.656891  0.500179  0.046006  0.862769  0.651065  0.543382
4  0.673702  0.223489  0.438760  0.468954  0.308509  0.422683
5  0.764020  0.093050  0.100932  0.572475  0.416471  0.389390
6  0.259181  0.248186  0.626101  0.556980  0.559413  0.449972
7  0.400591  0.075461  0.096072  0.308755  0.157078  0.207592
8  0.639745  0.368987  0.340573  0.997547  0.011892  0.471749
9  0.050582  0.714160  0.168839  0.899230  0.359690  0.438500

通用示例:

new_order = [3,2,1,4,5,0]
print(df[df.columns[new_order]])  

          3         2         1         4      mean         0
0  0.575223  0.719802  0.361846  0.449205  0.500678  0.397312
1  0.584221  0.992154  0.522337  0.042739  0.485741  0.287256
2  0.167698  0.149296  0.464172  0.793634  0.491923  0.884812
3  0.862769  0.046006  0.500179  0.651065  0.543382  0.656891
4  0.468954  0.438760  0.223489  0.308509  0.422683  0.673702
5  0.572475  0.100932  0.093050  0.416471  0.389390  0.764020
6  0.556980  0.626101  0.248186  0.559413  0.449972  0.259181
7  0.308755  0.096072  0.075461  0.157078  0.207592  0.400591
8  0.997547  0.340573  0.368987  0.011892  0.471749  0.639745
9  0.899230  0.168839  0.714160  0.359690  0.438500  0.050582

虽然看起来我只是以不同的顺序显式键入列名,但列“mean”的事实应该清楚地表明,new_order与实际位置相关,而不是列名。

对于OP问题的具体情况:

new_order = [-1,0,1,2,3,4]
df = df[df.columns[new_order]]
print(df)

       mean         0         1         2         3         4
0  0.500678  0.397312  0.361846  0.719802  0.575223  0.449205
1  0.485741  0.287256  0.522337  0.992154  0.584221  0.042739
2  0.491923  0.884812  0.464172  0.149296  0.167698  0.793634
3  0.543382  0.656891  0.500179  0.046006  0.862769  0.651065
4  0.422683  0.673702  0.223489  0.438760  0.468954  0.308509
5  0.389390  0.764020  0.093050  0.100932  0.572475  0.416471
6  0.449972  0.259181  0.248186  0.626101  0.556980  0.559413
7  0.207592  0.400591  0.075461  0.096072  0.308755  0.157078
8  0.471749  0.639745  0.368987  0.340573  0.997547  0.011892
9  0.438500  0.050582  0.714160  0.168839  0.899230  0.359690

这种方法的主要问题是多次调用同一代码将每次产生不同的结果,因此需要小心:)

我自己也遇到了一个类似的问题,只是想补充一下我已经解决的问题。我喜欢用于更改列顺序的reindex_axis()方法。这是有效的:

df = df.reindex_axis(['mean'] + list(df.columns[:-1]), axis=1)

另一种基于@Jorge评论的方法:

df = df.reindex(columns=['mean'] + list(df.columns[:-1]))

虽然reindex_axis在微基准测试中似乎比reindex稍快,但我认为我更喜欢后者,因为它的直接性。