我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
当前回答
大多数答案都不够概括,panda reindex_axis方法有点乏味,因此我提供了一个简单的函数,可以使用字典将任意数量的列移动到任意位置,其中key=列名,value=要移动到的位置。如果数据帧很大,请将True传递给“big_data”,那么函数将返回有序的列列表。您可以使用此列表来分割数据。
def order_column(df, columns, big_data = False):
"""Re-Orders dataFrame column(s)
Parameters :
df -- dataframe
columns -- a dictionary:
key = current column position/index or column name
value = position to move it to
big_data -- boolean
True = returns only the ordered columns as a list
the user user can then slice the data using this
ordered column
False = default - return a copy of the dataframe
"""
ordered_col = df.columns.tolist()
for key, value in columns.items():
ordered_col.remove(key)
ordered_col.insert(value, key)
if big_data:
return ordered_col
return df[ordered_col]
# e.g.
df = pd.DataFrame({'chicken wings': np.random.rand(10, 1).flatten(), 'taco': np.random.rand(10,1).flatten(),
'coffee': np.random.rand(10, 1).flatten()})
df['mean'] = df.mean(1)
df = order_column(df, {'mean': 0, 'coffee':1 })
>>>
col = order_column(df, {'mean': 0, 'coffee':1 }, True)
col
>>>
['mean', 'coffee', 'chicken wings', 'taco']
# you could grab it by doing this
df = df[col]
其他回答
您可以使用一个集合,它是唯一元素的无序集合,以保持“其他列的顺序不变”:
other_columns = list(set(df.columns).difference(["mean"])) #[0, 1, 2, 3, 4]
然后,可以通过以下方式使用lambda将特定列移动到前面:
In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: df = pd.DataFrame(np.random.rand(10, 5))
In [4]: df["mean"] = df.mean(1)
In [5]: move_col_to_front = lambda df, col: df[[col]+list(set(df.columns).difference([col]))]
In [6]: move_col_to_front(df, "mean")
Out[6]:
mean 0 1 2 3 4
0 0.697253 0.600377 0.464852 0.938360 0.945293 0.537384
1 0.609213 0.703387 0.096176 0.971407 0.955666 0.319429
2 0.561261 0.791842 0.302573 0.662365 0.728368 0.321158
3 0.518720 0.710443 0.504060 0.663423 0.208756 0.506916
4 0.616316 0.665932 0.794385 0.163000 0.664265 0.793995
5 0.519757 0.585462 0.653995 0.338893 0.714782 0.305654
6 0.532584 0.434472 0.283501 0.633156 0.317520 0.994271
7 0.640571 0.732680 0.187151 0.937983 0.921097 0.423945
8 0.562447 0.790987 0.200080 0.317812 0.641340 0.862018
9 0.563092 0.811533 0.662709 0.396048 0.596528 0.348642
In [7]: move_col_to_front(df, 2)
Out[7]:
2 0 1 3 4 mean
0 0.938360 0.600377 0.464852 0.945293 0.537384 0.697253
1 0.971407 0.703387 0.096176 0.955666 0.319429 0.609213
2 0.662365 0.791842 0.302573 0.728368 0.321158 0.561261
3 0.663423 0.710443 0.504060 0.208756 0.506916 0.518720
4 0.163000 0.665932 0.794385 0.664265 0.793995 0.616316
5 0.338893 0.585462 0.653995 0.714782 0.305654 0.519757
6 0.633156 0.434472 0.283501 0.317520 0.994271 0.532584
7 0.937983 0.732680 0.187151 0.921097 0.423945 0.640571
8 0.317812 0.790987 0.200080 0.641340 0.862018 0.562447
9 0.396048 0.811533 0.662709 0.596528 0.348642 0.563092
我认为这是一个略为简洁的解决方案:
df.insert(0, 'mean', df.pop("mean"))
这个解决方案有点类似于@JoeHeffer的解决方案,但这是一条直线。
这里,我们从数据帧中删除列“mean”,并将其附加到具有相同列名的索引0。
我很喜欢Shoresh的回答:当你不知道位置时,使用集合功能来删除列,但这不符合我的目的,因为我需要保持原始的列顺序(具有任意的列标签)。
不过,我通过使用boltons包中的IndexedSet实现了这一点。
我还需要重新添加多个列标签,因此对于更一般的情况,我使用了以下代码:
from boltons.setutils import IndexedSet
cols = list(IndexedSet(df.columns.tolist()) - set(['mean', 'std']))
cols[0:0] =['mean', 'std']
df = df[cols]
希望这对搜索此线程以寻求通用解决方案的任何人都有用。
只需按所需顺序分配列名:
In [39]: df
Out[39]:
0 1 2 3 4 mean
0 0.172742 0.915661 0.043387 0.712833 0.190717 1
1 0.128186 0.424771 0.590779 0.771080 0.617472 1
2 0.125709 0.085894 0.989798 0.829491 0.155563 1
3 0.742578 0.104061 0.299708 0.616751 0.951802 1
4 0.721118 0.528156 0.421360 0.105886 0.322311 1
5 0.900878 0.082047 0.224656 0.195162 0.736652 1
6 0.897832 0.558108 0.318016 0.586563 0.507564 1
7 0.027178 0.375183 0.930248 0.921786 0.337060 1
8 0.763028 0.182905 0.931756 0.110675 0.423398 1
9 0.848996 0.310562 0.140873 0.304561 0.417808 1
In [40]: df = df[['mean', 4,3,2,1]]
现在,“mean”列出现在前面:
In [41]: df
Out[41]:
mean 4 3 2 1
0 1 0.190717 0.712833 0.043387 0.915661
1 1 0.617472 0.771080 0.590779 0.424771
2 1 0.155563 0.829491 0.989798 0.085894
3 1 0.951802 0.616751 0.299708 0.104061
4 1 0.322311 0.105886 0.421360 0.528156
5 1 0.736652 0.195162 0.224656 0.082047
6 1 0.507564 0.586563 0.318016 0.558108
7 1 0.337060 0.921786 0.930248 0.375183
8 1 0.423398 0.110675 0.931756 0.182905
9 1 0.417808 0.304561 0.140873 0.310562
你也可以这样做:
df = df[['mean', '0', '1', '2', '3']]
您可以通过以下方式获取列列表:
cols = list(df.columns.values)
输出将产生:
['0', '1', '2', '3', 'mean']
…然后,在将其放入第一个函数之前,可以手动重新排列