我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
当前回答
我自己也遇到了一个类似的问题,只是想补充一下我已经解决的问题。我喜欢用于更改列顺序的reindex_axis()方法。这是有效的:
df = df.reindex_axis(['mean'] + list(df.columns[:-1]), axis=1)
另一种基于@Jorge评论的方法:
df = df.reindex(columns=['mean'] + list(df.columns[:-1]))
虽然reindex_axis在微基准测试中似乎比reindex稍快,但我认为我更喜欢后者,因为它的直接性。
其他回答
书中最黑客的方法
df.insert(0, "test", df["mean"])
df = df.drop(columns=["mean"]).rename(columns={"test": "mean"})
仅仅是翻转往往会有帮助。
df[df.columns[::-1]]
或者只是洗牌看看。
import random
cols = list(df.columns)
random.shuffle(cols)
df[cols]
我自己也遇到了一个类似的问题,只是想补充一下我已经解决的问题。我喜欢用于更改列顺序的reindex_axis()方法。这是有效的:
df = df.reindex_axis(['mean'] + list(df.columns[:-1]), axis=1)
另一种基于@Jorge评论的方法:
df = df.reindex(columns=['mean'] + list(df.columns[:-1]))
虽然reindex_axis在微基准测试中似乎比reindex稍快,但我认为我更喜欢后者,因为它的直接性。
您可以执行以下操作(从Aman的答案中借用零件):
cols = df.columns.tolist()
cols.insert(0, cols.pop(-1))
cols
>>>['mean', 0L, 1L, 2L, 3L, 4L]
df = df[cols]
我想在一个数据帧前面加上两列,我不知道所有列的确切名称,因为它们是从之前的pivot语句生成的。所以,如果你也遇到同样的情况:把你知道名字的列放在前面,然后让它们跟着“所有其他列”,我提出了以下一般解决方案:
df = df.reindex_axis(['Col1','Col2'] + list(df.columns.drop(['Col1','Col2'])), axis=1)