我有以下DataFrame(df):

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))

我通过分配添加更多列:

df['mean'] = df.mean(1)

如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?


当前回答

我想到了和Dmitriy Work一样的答案,显然是最简单的:

df["mean"] = df.mean(1)
l =  list(np.arange(0,len(df.columns) -1 ))
l.insert(0,-1)
df.iloc[:,l]

其他回答

我认为这是一个略为简洁的解决方案:

df.insert(0, 'mean', df.pop("mean"))

这个解决方案有点类似于@JoeHeffer的解决方案,但这是一条直线。

这里,我们从数据帧中删除列“mean”,并将其附加到具有相同列名的索引0。

我想在一个数据帧前面加上两列,我不知道所有列的确切名称,因为它们是从之前的pivot语句生成的。所以,如果你也遇到同样的情况:把你知道名字的列放在前面,然后让它们跟着“所有其他列”,我提出了以下一般解决方案:

df = df.reindex_axis(['Col1','Col2'] + list(df.columns.drop(['Col1','Col2'])), axis=1)

您可以使用一个集合,它是唯一元素的无序集合,以保持“其他列的顺序不变”:

other_columns = list(set(df.columns).difference(["mean"])) #[0, 1, 2, 3, 4]

然后,可以通过以下方式使用lambda将特定列移动到前面:

In [1]: import numpy as np                                                                               

In [2]: import pandas as pd                                                                              

In [3]: df = pd.DataFrame(np.random.rand(10, 5))                                                         

In [4]: df["mean"] = df.mean(1)                                                                          

In [5]: move_col_to_front = lambda df, col: df[[col]+list(set(df.columns).difference([col]))]            

In [6]: move_col_to_front(df, "mean")                                                                    
Out[6]: 
       mean         0         1         2         3         4
0  0.697253  0.600377  0.464852  0.938360  0.945293  0.537384
1  0.609213  0.703387  0.096176  0.971407  0.955666  0.319429
2  0.561261  0.791842  0.302573  0.662365  0.728368  0.321158
3  0.518720  0.710443  0.504060  0.663423  0.208756  0.506916
4  0.616316  0.665932  0.794385  0.163000  0.664265  0.793995
5  0.519757  0.585462  0.653995  0.338893  0.714782  0.305654
6  0.532584  0.434472  0.283501  0.633156  0.317520  0.994271
7  0.640571  0.732680  0.187151  0.937983  0.921097  0.423945
8  0.562447  0.790987  0.200080  0.317812  0.641340  0.862018
9  0.563092  0.811533  0.662709  0.396048  0.596528  0.348642

In [7]: move_col_to_front(df, 2)                                                                         
Out[7]: 
          2         0         1         3         4      mean
0  0.938360  0.600377  0.464852  0.945293  0.537384  0.697253
1  0.971407  0.703387  0.096176  0.955666  0.319429  0.609213
2  0.662365  0.791842  0.302573  0.728368  0.321158  0.561261
3  0.663423  0.710443  0.504060  0.208756  0.506916  0.518720
4  0.163000  0.665932  0.794385  0.664265  0.793995  0.616316
5  0.338893  0.585462  0.653995  0.714782  0.305654  0.519757
6  0.633156  0.434472  0.283501  0.317520  0.994271  0.532584
7  0.937983  0.732680  0.187151  0.921097  0.423945  0.640571
8  0.317812  0.790987  0.200080  0.641340  0.862018  0.562447
9  0.396048  0.811533  0.662709  0.596528  0.348642  0.563092

简单地说,

df = df[['mean'] + df.columns[:-1].tolist()]

您可以使用以下名称列表对数据帧列进行重新排序:

df=df.filter(list_of_col_name)