我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
当前回答
您可以执行以下操作(从Aman的答案中借用零件):
cols = df.columns.tolist()
cols.insert(0, cols.pop(-1))
cols
>>>['mean', 0L, 1L, 2L, 3L, 4L]
df = df[cols]
其他回答
熊猫>=1.3(2022年编辑):
df.insert(0, 'mean', df.pop('mean'))
怎么样(对于熊猫<1.3,原始答案)
df.insert(0, 'mean', df['mean'])
https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#column-选择添加删除
只需键入要更改的列名,然后为新位置设置索引。
def change_column_order(df, col_name, index):
cols = df.columns.tolist()
cols.remove(col_name)
cols.insert(index, col_name)
return df[cols]
对于您的情况,这将是:
df = change_column_order(df, 'mean', 0)
在您的情况下,
df = df.reindex(columns=['mean',0,1,2,3,4])
会做你想做的事。
在我的情况下(一般形式):
df = df.reindex(columns=sorted(df.columns))
df = df.reindex(columns=(['opened'] + list([a for a in df.columns if a != 'opened']) ))
我想在一个数据帧前面加上两列,我不知道所有列的确切名称,因为它们是从之前的pivot语句生成的。所以,如果你也遇到同样的情况:把你知道名字的列放在前面,然后让它们跟着“所有其他列”,我提出了以下一般解决方案:
df = df.reindex_axis(['Col1','Col2'] + list(df.columns.drop(['Col1','Col2'])), axis=1)
您需要按所需的顺序创建一个新的列列表,然后使用df=df[cols]以新的顺序重新排列列。
cols = ['mean'] + [col for col in df if col != 'mean']
df = df[cols]
您也可以使用更通用的方法。在本例中,最后一列(由-1表示)作为第一列插入。
cols = [df.columns[-1]] + [col for col in df if col != df.columns[-1]]
df = df[cols]
如果DataFrame中存在列,也可以使用此方法按所需顺序重新排序列。
inserted_cols = ['a', 'b', 'c']
cols = ([col for col in inserted_cols if col in df]
+ [col for col in df if col not in inserted_cols])
df = df[cols]