我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
当前回答
您可以使用以下名称列表对数据帧列进行重新排序:
df=df.filter(list_of_col_name)
其他回答
熊猫>=1.3(2022年编辑):
df.insert(0, 'mean', df.pop('mean'))
怎么样(对于熊猫<1.3,原始答案)
df.insert(0, 'mean', df['mean'])
https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#column-选择添加删除
将任意列移动到任意位置:
import pandas as pd
df = pd.DataFrame({"A": [1,2,3],
"B": [2,4,8],
"C": [5,5,5]})
cols = df.columns.tolist()
column_to_move = "C"
new_position = 1
cols.insert(new_position, cols.pop(cols.index(column_to_move)))
df = df[cols]
一种简单的方法是使用set(),特别是当您有一长串列并且不想手动处理它们时:
cols = list(set(df.columns.tolist()) - set(['mean']))
cols.insert(0, 'mean')
df = df[cols]
您可以执行以下操作(从Aman的答案中借用零件):
cols = df.columns.tolist()
cols.insert(0, cols.pop(-1))
cols
>>>['mean', 0L, 1L, 2L, 3L, 4L]
df = df[cols]
在您的情况下,
df = df.reindex(columns=['mean',0,1,2,3,4])
会做你想做的事。
在我的情况下(一般形式):
df = df.reindex(columns=sorted(df.columns))
df = df.reindex(columns=(['opened'] + list([a for a in df.columns if a != 'opened']) ))