我有以下DataFrame(df):

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))

我通过分配添加更多列:

df['mean'] = df.mean(1)

如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?


当前回答

import numpy as np
import pandas as pd
df = pd.DataFrame()
column_names = ['x','y','z','mean']
for col in column_names: 
    df[col] = np.random.randint(0,100, size=10000)

您可以尝试以下解决方案:

解决方案1:

df = df[ ['mean'] + [ col for col in df.columns if col != 'mean' ] ]

解决方案2:


df = df[['mean', 'x', 'y', 'z']]

解决方案3:

col = df.pop("mean")
df = df.insert(0, col.name, col)

解决方案4:

df.set_index(df.columns[-1], inplace=True)
df.reset_index(inplace=True)

解决方案5:

cols = list(df)
cols = [cols[-1]] + cols[:-1]
df = df[cols]

解决方案6:

order = [1,2,3,0] # setting column's order
df = df[[df.columns[i] for i in order]]

时间比较:

解决方案1:

CPU时间:用户1.05 ms,sys:35µs,总计:1.08 ms壁时间:995µs

解决方案2:

CPU时间:用户933µs,系统:0 ns,总计:933µ壁时间:800µs

解决方案3:

CPU时间:用户0 ns,sys:1.35 ms,总计:1.35 ms壁时间:1.08 ms

解决方案4:

CPU时间:用户1.23毫秒,系统:45µs,总计:1.27毫秒壁时间:986µs

解决方案5:

CPU时间:用户1.09 ms,系统:19µs,总计:1.11 ms壁时间:949µs

解决方案6:

CPU时间:用户955µs,系统:34µs,总计:989µs壁时间:859µs

其他回答

我自己也遇到了一个类似的问题,只是想补充一下我已经解决的问题。我喜欢用于更改列顺序的reindex_axis()方法。这是有效的:

df = df.reindex_axis(['mean'] + list(df.columns[:-1]), axis=1)

另一种基于@Jorge评论的方法:

df = df.reindex(columns=['mean'] + list(df.columns[:-1]))

虽然reindex_axis在微基准测试中似乎比reindex稍快,但我认为我更喜欢后者,因为它的直接性。

这个问题以前已经回答过,但reindex_axis现在已被弃用,因此我建议使用:

df = df.reindex(sorted(df.columns), axis=1)

对于那些想要指定他们想要的顺序而不是仅仅对它们进行排序的人来说,下面列出了解决方案:

df = df.reindex(['the','order','you','want'], axis=1)

现在,如何对列名列表排序真的不是熊猫问题,而是Python列表操作问题。有很多方法可以做到这一点,我认为这个答案有一个非常简洁的方法。

要根据其他列的名称将现有列设置为右侧/左侧,请执行以下操作:

def df_move_column(df, col_to_move, col_left_of_destiny="", right_of_col_bool=True):
    cols = list(df.columns.values)
    index_max = len(cols) - 1

    if not right_of_col_bool:
        # set left of a column "c", is like putting right of column previous to "c"
        # ... except if left of 1st column, then recursive call to set rest right to it
        aux = cols.index(col_left_of_destiny)
        if not aux:
            for g in [x for x in cols[::-1] if x != col_to_move]:
                df = df_move_column(
                        df, 
                        col_to_move=g, 
                        col_left_of_destiny=col_to_move
                        )
            return df
        col_left_of_destiny = cols[aux - 1]

    index_old = cols.index(col_to_move)
    index_new = 0
    if len(col_left_of_destiny):
        index_new = cols.index(col_left_of_destiny) + 1

    if index_old == index_new:
        return df

    if index_new < index_old:
        index_new = np.min([index_new, index_max])
        cols = (
            cols[:index_new]
            + [cols[index_old]]
            + cols[index_new:index_old]
            + cols[index_old + 1 :]
        )
    else:
        cols = (
            cols[:index_old]
            + cols[index_old + 1 : index_new]
            + [cols[index_old]]
            + cols[index_new:]
        )

    df = df[cols]
    return df

E.g.

cols = list("ABCD")
df2 = pd.DataFrame(np.arange(4)[np.newaxis, :], columns=cols)
for k in cols:
    print(30 * "-")
    for g in [x for x in cols if x != k]:
        df_new = df_move_column(df2, k, g)
        print(f"{k} after {g}:  {df_new.columns.values}")
for k in cols:
    print(30 * "-")
    for g in [x for x in cols if x != k]:
        df_new = df_move_column(df2, k, g, right_of_col_bool=False)
        print(f"{k} before {g}:  {df_new.columns.values}")

输出:

另一种选择是使用set_index()方法,后跟reset_index()。请注意,我们首先pop()将要移动到数据帧前面的列,以便在重置索引时避免名称冲突:

df.set_index(df.pop('column_name'), inplace=True)
df.reset_index(inplace=True)

有关详细信息,请参阅How to change the order of dataframe columns in panda。

我想在一个数据帧前面加上两列,我不知道所有列的确切名称,因为它们是从之前的pivot语句生成的。所以,如果你也遇到同样的情况:把你知道名字的列放在前面,然后让它们跟着“所有其他列”,我提出了以下一般解决方案:

df = df.reindex_axis(['Col1','Col2'] + list(df.columns.drop(['Col1','Col2'])), axis=1)