我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
当前回答
这里有一个函数可以对任意数量的列执行此操作。
def mean_first(df):
ncols = df.shape[1] # Get the number of columns
index = list(range(ncols)) # Create an index to reorder the columns
index.insert(0,ncols) # This puts the last column at the front
return(df.assign(mean=df.mean(1)).iloc[:,index]) # new df with last column (mean) first
其他回答
你也可以这样做:
df = df[['mean', '0', '1', '2', '3']]
您可以通过以下方式获取列列表:
cols = list(df.columns.values)
输出将产生:
['0', '1', '2', '3', 'mean']
…然后,在将其放入第一个函数之前,可以手动重新排列
您可以执行以下操作(从Aman的答案中借用零件):
cols = df.columns.tolist()
cols.insert(0, cols.pop(-1))
cols
>>>['mean', 0L, 1L, 2L, 3L, 4L]
df = df[cols]
我想在一个数据帧前面加上两列,我不知道所有列的确切名称,因为它们是从之前的pivot语句生成的。所以,如果你也遇到同样的情况:把你知道名字的列放在前面,然后让它们跟着“所有其他列”,我提出了以下一般解决方案:
df = df.reindex_axis(['Col1','Col2'] + list(df.columns.drop(['Col1','Col2'])), axis=1)
我相信,如果你知道另一列的位置,@Aman的答案是最好的。
如果您不知道mean的位置,但只有它的名称,则不能直接使用cols=cols[-1:]+cols[:-1]。以下是我接下来能想到的最好的东西:
meanDf = pd.DataFrame(df.pop('mean'))
# now df doesn't contain "mean" anymore. Order of join will move it to left or right:
meanDf.join(df) # has mean as first column
df.join(meanDf) # has mean as last column
我有一个在panda中重新排序列名的非常具体的用例。有时我在基于现有列的数据帧中创建一个新列。默认情况下,panda将在末尾插入我的新列,但我希望新列插入到它派生的现有列旁边。
def rearrange_list(input_list, input_item_to_move, input_item_insert_here):
'''
Helper function to re-arrange the order of items in a list.
Useful for moving column in pandas dataframe.
Inputs:
input_list - list
input_item_to_move - item in list to move
input_item_insert_here - item in list, insert before
returns:
output_list
'''
# make copy for output, make sure it's a list
output_list = list(input_list)
# index of item to move
idx_move = output_list.index(input_item_to_move)
# pop off the item to move
itm_move = output_list.pop(idx_move)
# index of item to insert here
idx_insert = output_list.index(input_item_insert_here)
# insert item to move into here
output_list.insert(idx_insert, itm_move)
return output_list
import pandas as pd
# step 1: create sample dataframe
df = pd.DataFrame({
'motorcycle': ['motorcycle1', 'motorcycle2', 'motorcycle3'],
'initial_odometer': [101, 500, 322],
'final_odometer': [201, 515, 463],
'other_col_1': ['blah', 'blah', 'blah'],
'other_col_2': ['blah', 'blah', 'blah']
})
print('Step 1: create sample dataframe')
display(df)
print()
# step 2: add new column that is difference between final and initial
df['change_odometer'] = df['final_odometer']-df['initial_odometer']
print('Step 2: add new column')
display(df)
print()
# step 3: rearrange columns
ls_cols = df.columns
ls_cols = rearrange_list(ls_cols, 'change_odometer', 'final_odometer')
df=df[ls_cols]
print('Step 3: rearrange columns')
display(df)