我有以下DataFrame(df):

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))

我通过分配添加更多列:

df['mean'] = df.mean(1)

如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?


当前回答

我尝试了创建一个order函数,您可以使用Stata的order命令对列进行重新排序/移动。最好创建一个py文件(其名称可能是order.py),并将其保存在目录中并调用它的函数

def order(dataframe,cols,f_or_l=None,before=None, after=None):

#만든이: 김완석, Stata로 뚝딱뚝딱 저자, blog.naver.com/sanzo213 운영
# 갖다 쓰시거나 수정을 하셔도 되지만 출처는 꼭 밝혀주세요
# cols옵션 및 befor/after옵션에 튜플이 가능하게끔 수정했으며, 오류문구 수정함(2021.07.12,1)
# 칼럼이 멀티인덱스인 상태에서 reset_index()메소드 사용했을 시 적용안되는 걸 수정함(2021.07.12,2) 

import pandas as pd
if (type(cols)==str) or (type(cols)==int) or (type(cols)==float) or (type(cols)==bool) or type(cols)==tuple:    
    cols=[cols]
    
dd=list(dataframe.columns)
for i in cols:
    i
    dd.remove(i) #cols요소를 제거함
    
if (f_or_l==None) & ((before==None) & (after==None)):
    print('f_or_l옵션을 쓰시거나 아니면 before옵션/after옵션 쓰셔야되요')
    
if ((f_or_l=='first') or (f_or_l=='last')) & ~((before==None) & (after==None)):
    print('f_or_l옵션 사용시 before after 옵션 사용불가입니다.')
    
if (f_or_l=='first') & (before==None) & (after==None):
    new_order=cols+dd
    dataframe=dataframe[new_order]
    return dataframe

if (f_or_l=='last') & (before==None) & (after==None):   
    new_order=dd+cols
    dataframe=dataframe[new_order]
    return dataframe
    
if (before!=None) & (after!=None):
    print('before옵션 after옵션 둘다 쓸 수 없습니다.')
    

if (before!=None) & (after==None) & (f_or_l==None):

    if not((type(before)==str) or (type(before)==int) or (type(before)==float) or
       (type(before)==bool) or ((type(before)!=list)) or 
       ((type(before)==tuple))):
        print('before옵션은 칼럼 하나만 입력가능하며 리스트 형태로도 입력하지 마세요.')
    
    else:
        b=dd[:dd.index(before)]
        a=dd[dd.index(before):]
        
        new_order=b+cols+a
        dataframe=dataframe[new_order]  
        return dataframe
    
if (after!=None) & (before==None) & (f_or_l==None):

    if not((type(after)==str) or (type(after)==int) or (type(after)==float) or
       (type(after)==bool) or ((type(after)!=list)) or 
       ((type(after)==tuple))):
            
        print('after옵션은 칼럼 하나만 입력가능하며 리스트 형태로도 입력하지 마세요.')  

    else:
        b=dd[:dd.index(after)+1]
        a=dd[dd.index(after)+1:]
        
        new_order=b+cols+a
        dataframe=dataframe[new_order]
        return dataframe

下面的python代码是我制作的order函数的一个示例。我希望您可以使用我的order函数轻松地对列进行重新排序:)

# module

import pandas as pd
import numpy as np
from order import order # call order function from order.py file

# make a dataset

columns='a b c d e f g h i j k'.split()
dic={}

n=-1
for i in columns:
    
    n+=1
    dic[i]=list(range(1+n,10+1+n))
data=pd.DataFrame(dic)
print(data)

# use order function (1) : order column e in the first

data2=order(data,'e',f_or_l='first')
print(data2)

# use order function (2): order column e in the last , "data" dataframe

print(order(data,'e',f_or_l='last'))


# use order function (3) : order column i before column c in "data" dataframe

print(order(data,'i',before='c'))


# use order function (4) : order column g after column b in "data" dataframe

print(order(data,'g',after='b'))

# use order function (4) : order columns ['c', 'd', 'e'] after column i in "data" dataframe

print(order(data,['c', 'd', 'e'],after='i'))

其他回答

这里有一种移动一个现有列的方法,它将修改现有的数据帧。

my_column = df.pop('column name')
df.insert(3, my_column.name, my_column)  # Is in-place

我相信,如果你知道另一列的位置,@Aman的答案是最好的。

如果您不知道mean的位置,但只有它的名称,则不能直接使用cols=cols[-1:]+cols[:-1]。以下是我接下来能想到的最好的东西:

meanDf = pd.DataFrame(df.pop('mean'))
# now df doesn't contain "mean" anymore. Order of join will move it to left or right:
meanDf.join(df) # has mean as first column
df.join(meanDf) # has mean as last column

假设您有列为A、B、C的df。

最简单的方法是:

df = df.reindex(['B','C','A'], axis=1)

如果列名太长,无法键入,则可以通过整数列表指定新顺序,其中包含以下位置:

数据:

          0         1         2         3         4      mean
0  0.397312  0.361846  0.719802  0.575223  0.449205  0.500678
1  0.287256  0.522337  0.992154  0.584221  0.042739  0.485741
2  0.884812  0.464172  0.149296  0.167698  0.793634  0.491923
3  0.656891  0.500179  0.046006  0.862769  0.651065  0.543382
4  0.673702  0.223489  0.438760  0.468954  0.308509  0.422683
5  0.764020  0.093050  0.100932  0.572475  0.416471  0.389390
6  0.259181  0.248186  0.626101  0.556980  0.559413  0.449972
7  0.400591  0.075461  0.096072  0.308755  0.157078  0.207592
8  0.639745  0.368987  0.340573  0.997547  0.011892  0.471749
9  0.050582  0.714160  0.168839  0.899230  0.359690  0.438500

通用示例:

new_order = [3,2,1,4,5,0]
print(df[df.columns[new_order]])  

          3         2         1         4      mean         0
0  0.575223  0.719802  0.361846  0.449205  0.500678  0.397312
1  0.584221  0.992154  0.522337  0.042739  0.485741  0.287256
2  0.167698  0.149296  0.464172  0.793634  0.491923  0.884812
3  0.862769  0.046006  0.500179  0.651065  0.543382  0.656891
4  0.468954  0.438760  0.223489  0.308509  0.422683  0.673702
5  0.572475  0.100932  0.093050  0.416471  0.389390  0.764020
6  0.556980  0.626101  0.248186  0.559413  0.449972  0.259181
7  0.308755  0.096072  0.075461  0.157078  0.207592  0.400591
8  0.997547  0.340573  0.368987  0.011892  0.471749  0.639745
9  0.899230  0.168839  0.714160  0.359690  0.438500  0.050582

虽然看起来我只是以不同的顺序显式键入列名,但列“mean”的事实应该清楚地表明,new_order与实际位置相关,而不是列名。

对于OP问题的具体情况:

new_order = [-1,0,1,2,3,4]
df = df[df.columns[new_order]]
print(df)

       mean         0         1         2         3         4
0  0.500678  0.397312  0.361846  0.719802  0.575223  0.449205
1  0.485741  0.287256  0.522337  0.992154  0.584221  0.042739
2  0.491923  0.884812  0.464172  0.149296  0.167698  0.793634
3  0.543382  0.656891  0.500179  0.046006  0.862769  0.651065
4  0.422683  0.673702  0.223489  0.438760  0.468954  0.308509
5  0.389390  0.764020  0.093050  0.100932  0.572475  0.416471
6  0.449972  0.259181  0.248186  0.626101  0.556980  0.559413
7  0.207592  0.400591  0.075461  0.096072  0.308755  0.157078
8  0.471749  0.639745  0.368987  0.340573  0.997547  0.011892
9  0.438500  0.050582  0.714160  0.168839  0.899230  0.359690

这种方法的主要问题是多次调用同一代码将每次产生不同的结果,因此需要小心:)

熊猫>=1.3(2022年编辑):

df.insert(0, 'mean', df.pop('mean'))

怎么样(对于熊猫<1.3,原始答案)

df.insert(0, 'mean', df['mean'])

https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#column-选择添加删除