我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
当前回答
只需按所需顺序分配列名:
In [39]: df
Out[39]:
0 1 2 3 4 mean
0 0.172742 0.915661 0.043387 0.712833 0.190717 1
1 0.128186 0.424771 0.590779 0.771080 0.617472 1
2 0.125709 0.085894 0.989798 0.829491 0.155563 1
3 0.742578 0.104061 0.299708 0.616751 0.951802 1
4 0.721118 0.528156 0.421360 0.105886 0.322311 1
5 0.900878 0.082047 0.224656 0.195162 0.736652 1
6 0.897832 0.558108 0.318016 0.586563 0.507564 1
7 0.027178 0.375183 0.930248 0.921786 0.337060 1
8 0.763028 0.182905 0.931756 0.110675 0.423398 1
9 0.848996 0.310562 0.140873 0.304561 0.417808 1
In [40]: df = df[['mean', 4,3,2,1]]
现在,“mean”列出现在前面:
In [41]: df
Out[41]:
mean 4 3 2 1
0 1 0.190717 0.712833 0.043387 0.915661
1 1 0.617472 0.771080 0.590779 0.424771
2 1 0.155563 0.829491 0.989798 0.085894
3 1 0.951802 0.616751 0.299708 0.104061
4 1 0.322311 0.105886 0.421360 0.528156
5 1 0.736652 0.195162 0.224656 0.082047
6 1 0.507564 0.586563 0.318016 0.558108
7 1 0.337060 0.921786 0.930248 0.375183
8 1 0.423398 0.110675 0.931756 0.182905
9 1 0.417808 0.304561 0.140873 0.310562
其他回答
这个问题以前已经回答过,但reindex_axis现在已被弃用,因此我建议使用:
df = df.reindex(sorted(df.columns), axis=1)
对于那些想要指定他们想要的顺序而不是仅仅对它们进行排序的人来说,下面列出了解决方案:
df = df.reindex(['the','order','you','want'], axis=1)
现在,如何对列名列表排序真的不是熊猫问题,而是Python列表操作问题。有很多方法可以做到这一点,我认为这个答案有一个非常简洁的方法。
一种简单的方法是使用set(),特别是当您有一长串列并且不想手动处理它们时:
cols = list(set(df.columns.tolist()) - set(['mean']))
cols.insert(0, 'mean')
df = df[cols]
只需键入要更改的列名,然后为新位置设置索引。
def change_column_order(df, col_name, index):
cols = df.columns.tolist()
cols.remove(col_name)
cols.insert(index, col_name)
return df[cols]
对于您的情况,这将是:
df = change_column_order(df, 'mean', 0)
下面是一个超级简单的方法示例。如果您要从excel复制标题,请使用.split('\t')
df = df['FILE_NAME DISPLAY_PATH SHAREPOINT_PATH RETAILER LAST_UPDATE'.split()]
使用T怎么样?
df = df.T.reindex(['mean', 0, 1, 2, 3, 4]).T