我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
当前回答
与上面的答案类似,还有一种方法可以使用deque()及其rotate()方法。rotate方法获取列表中的最后一个元素并将其插入开头:
from collections import deque
columns = deque(df.columns.tolist())
columns.rotate()
df = df[columns]
其他回答
我自己也遇到了一个类似的问题,只是想补充一下我已经解决的问题。我喜欢用于更改列顺序的reindex_axis()方法。这是有效的:
df = df.reindex_axis(['mean'] + list(df.columns[:-1]), axis=1)
另一种基于@Jorge评论的方法:
df = df.reindex(columns=['mean'] + list(df.columns[:-1]))
虽然reindex_axis在微基准测试中似乎比reindex稍快,但我认为我更喜欢后者,因为它的直接性。
一种简单的方法是用列列表重新分配数据帧,根据需要重新排列。
这就是你现在拥有的:
In [6]: df
Out[6]:
0 1 2 3 4 mean
0 0.445598 0.173835 0.343415 0.682252 0.582616 0.445543
1 0.881592 0.696942 0.702232 0.696724 0.373551 0.670208
2 0.662527 0.955193 0.131016 0.609548 0.804694 0.632596
3 0.260919 0.783467 0.593433 0.033426 0.512019 0.436653
4 0.131842 0.799367 0.182828 0.683330 0.019485 0.363371
5 0.498784 0.873495 0.383811 0.699289 0.480447 0.587165
6 0.388771 0.395757 0.745237 0.628406 0.784473 0.588529
7 0.147986 0.459451 0.310961 0.706435 0.100914 0.345149
8 0.394947 0.863494 0.585030 0.565944 0.356561 0.553195
9 0.689260 0.865243 0.136481 0.386582 0.730399 0.561593
In [7]: cols = df.columns.tolist()
In [8]: cols
Out[8]: [0L, 1L, 2L, 3L, 4L, 'mean']
按任意方式重新排列列。这是我将最后一个元素移动到第一个位置的方式:
In [12]: cols = cols[-1:] + cols[:-1]
In [13]: cols
Out[13]: ['mean', 0L, 1L, 2L, 3L, 4L]
然后重新排序数据帧,如下所示:
In [16]: df = df[cols] # OR df = df.ix[:, cols]
In [17]: df
Out[17]:
mean 0 1 2 3 4
0 0.445543 0.445598 0.173835 0.343415 0.682252 0.582616
1 0.670208 0.881592 0.696942 0.702232 0.696724 0.373551
2 0.632596 0.662527 0.955193 0.131016 0.609548 0.804694
3 0.436653 0.260919 0.783467 0.593433 0.033426 0.512019
4 0.363371 0.131842 0.799367 0.182828 0.683330 0.019485
5 0.587165 0.498784 0.873495 0.383811 0.699289 0.480447
6 0.588529 0.388771 0.395757 0.745237 0.628406 0.784473
7 0.345149 0.147986 0.459451 0.310961 0.706435 0.100914
8 0.553195 0.394947 0.863494 0.585030 0.565944 0.356561
9 0.561593 0.689260 0.865243 0.136481 0.386582 0.730399
我想在一个数据帧前面加上两列,我不知道所有列的确切名称,因为它们是从之前的pivot语句生成的。所以,如果你也遇到同样的情况:把你知道名字的列放在前面,然后让它们跟着“所有其他列”,我提出了以下一般解决方案:
df = df.reindex_axis(['Col1','Col2'] + list(df.columns.drop(['Col1','Col2'])), axis=1)
使用T怎么样?
df = df.T.reindex(['mean', 0, 1, 2, 3, 4]).T
我尝试了创建一个order函数,您可以使用Stata的order命令对列进行重新排序/移动。最好创建一个py文件(其名称可能是order.py),并将其保存在目录中并调用它的函数
def order(dataframe,cols,f_or_l=None,before=None, after=None):
#만든이: 김완석, Stata로 뚝딱뚝딱 저자, blog.naver.com/sanzo213 운영
# 갖다 쓰시거나 수정을 하셔도 되지만 출처는 꼭 밝혀주세요
# cols옵션 및 befor/after옵션에 튜플이 가능하게끔 수정했으며, 오류문구 수정함(2021.07.12,1)
# 칼럼이 멀티인덱스인 상태에서 reset_index()메소드 사용했을 시 적용안되는 걸 수정함(2021.07.12,2)
import pandas as pd
if (type(cols)==str) or (type(cols)==int) or (type(cols)==float) or (type(cols)==bool) or type(cols)==tuple:
cols=[cols]
dd=list(dataframe.columns)
for i in cols:
i
dd.remove(i) #cols요소를 제거함
if (f_or_l==None) & ((before==None) & (after==None)):
print('f_or_l옵션을 쓰시거나 아니면 before옵션/after옵션 쓰셔야되요')
if ((f_or_l=='first') or (f_or_l=='last')) & ~((before==None) & (after==None)):
print('f_or_l옵션 사용시 before after 옵션 사용불가입니다.')
if (f_or_l=='first') & (before==None) & (after==None):
new_order=cols+dd
dataframe=dataframe[new_order]
return dataframe
if (f_or_l=='last') & (before==None) & (after==None):
new_order=dd+cols
dataframe=dataframe[new_order]
return dataframe
if (before!=None) & (after!=None):
print('before옵션 after옵션 둘다 쓸 수 없습니다.')
if (before!=None) & (after==None) & (f_or_l==None):
if not((type(before)==str) or (type(before)==int) or (type(before)==float) or
(type(before)==bool) or ((type(before)!=list)) or
((type(before)==tuple))):
print('before옵션은 칼럼 하나만 입력가능하며 리스트 형태로도 입력하지 마세요.')
else:
b=dd[:dd.index(before)]
a=dd[dd.index(before):]
new_order=b+cols+a
dataframe=dataframe[new_order]
return dataframe
if (after!=None) & (before==None) & (f_or_l==None):
if not((type(after)==str) or (type(after)==int) or (type(after)==float) or
(type(after)==bool) or ((type(after)!=list)) or
((type(after)==tuple))):
print('after옵션은 칼럼 하나만 입력가능하며 리스트 형태로도 입력하지 마세요.')
else:
b=dd[:dd.index(after)+1]
a=dd[dd.index(after)+1:]
new_order=b+cols+a
dataframe=dataframe[new_order]
return dataframe
下面的python代码是我制作的order函数的一个示例。我希望您可以使用我的order函数轻松地对列进行重新排序:)
# module
import pandas as pd
import numpy as np
from order import order # call order function from order.py file
# make a dataset
columns='a b c d e f g h i j k'.split()
dic={}
n=-1
for i in columns:
n+=1
dic[i]=list(range(1+n,10+1+n))
data=pd.DataFrame(dic)
print(data)
# use order function (1) : order column e in the first
data2=order(data,'e',f_or_l='first')
print(data2)
# use order function (2): order column e in the last , "data" dataframe
print(order(data,'e',f_or_l='last'))
# use order function (3) : order column i before column c in "data" dataframe
print(order(data,'i',before='c'))
# use order function (4) : order column g after column b in "data" dataframe
print(order(data,'g',after='b'))
# use order function (4) : order columns ['c', 'd', 'e'] after column i in "data" dataframe
print(order(data,['c', 'd', 'e'],after='i'))