我有以下DataFrame(df):

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))

我通过分配添加更多列:

df['mean'] = df.mean(1)

如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?


当前回答

我相信,如果你知道另一列的位置,@Aman的答案是最好的。

如果您不知道mean的位置,但只有它的名称,则不能直接使用cols=cols[-1:]+cols[:-1]。以下是我接下来能想到的最好的东西:

meanDf = pd.DataFrame(df.pop('mean'))
# now df doesn't contain "mean" anymore. Order of join will move it to left or right:
meanDf.join(df) # has mean as first column
df.join(meanDf) # has mean as last column

其他回答

要根据其他列的名称将现有列设置为右侧/左侧,请执行以下操作:

def df_move_column(df, col_to_move, col_left_of_destiny="", right_of_col_bool=True):
    cols = list(df.columns.values)
    index_max = len(cols) - 1

    if not right_of_col_bool:
        # set left of a column "c", is like putting right of column previous to "c"
        # ... except if left of 1st column, then recursive call to set rest right to it
        aux = cols.index(col_left_of_destiny)
        if not aux:
            for g in [x for x in cols[::-1] if x != col_to_move]:
                df = df_move_column(
                        df, 
                        col_to_move=g, 
                        col_left_of_destiny=col_to_move
                        )
            return df
        col_left_of_destiny = cols[aux - 1]

    index_old = cols.index(col_to_move)
    index_new = 0
    if len(col_left_of_destiny):
        index_new = cols.index(col_left_of_destiny) + 1

    if index_old == index_new:
        return df

    if index_new < index_old:
        index_new = np.min([index_new, index_max])
        cols = (
            cols[:index_new]
            + [cols[index_old]]
            + cols[index_new:index_old]
            + cols[index_old + 1 :]
        )
    else:
        cols = (
            cols[:index_old]
            + cols[index_old + 1 : index_new]
            + [cols[index_old]]
            + cols[index_new:]
        )

    df = df[cols]
    return df

E.g.

cols = list("ABCD")
df2 = pd.DataFrame(np.arange(4)[np.newaxis, :], columns=cols)
for k in cols:
    print(30 * "-")
    for g in [x for x in cols if x != k]:
        df_new = df_move_column(df2, k, g)
        print(f"{k} after {g}:  {df_new.columns.values}")
for k in cols:
    print(30 * "-")
    for g in [x for x in cols if x != k]:
        df_new = df_move_column(df2, k, g, right_of_col_bool=False)
        print(f"{k} before {g}:  {df_new.columns.values}")

输出:

在您的情况下,

df = df.reindex(columns=['mean',0,1,2,3,4])

会做你想做的事。

在我的情况下(一般形式):

df = df.reindex(columns=sorted(df.columns))
df = df.reindex(columns=(['opened'] + list([a for a in df.columns if a != 'opened']) ))

我认为这个函数更简单。您只需在开始或结束处或同时指定列的子集:

def reorder_df_columns(df, start=None, end=None):
    """
        This function reorder columns of a DataFrame.
        It takes columns given in the list `start` and move them to the left.
        Its also takes columns in `end` and move them to the right.
    """
    if start is None:
        start = []
    if end is None:
        end = []
    assert isinstance(start, list) and isinstance(end, list)
    cols = list(df.columns)
    for c in start:
        if c not in cols:
            start.remove(c)
    for c in end:
        if c not in cols or c in start:
            end.remove(c)
    for c in start + end:
        cols.remove(c)
    cols = start + cols + end
    return df[cols]

我相信,如果你知道另一列的位置,@Aman的答案是最好的。

如果您不知道mean的位置,但只有它的名称,则不能直接使用cols=cols[-1:]+cols[:-1]。以下是我接下来能想到的最好的东西:

meanDf = pd.DataFrame(df.pop('mean'))
# now df doesn't contain "mean" anymore. Order of join will move it to left or right:
meanDf.join(df) # has mean as first column
df.join(meanDf) # has mean as last column

简单地说,

df = df[['mean'] + df.columns[:-1].tolist()]