我有以下DataFrame(df):

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))

我通过分配添加更多列:

df['mean'] = df.mean(1)

如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?


当前回答

我相信,如果你知道另一列的位置,@Aman的答案是最好的。

如果您不知道mean的位置,但只有它的名称,则不能直接使用cols=cols[-1:]+cols[:-1]。以下是我接下来能想到的最好的东西:

meanDf = pd.DataFrame(df.pop('mean'))
# now df doesn't contain "mean" anymore. Order of join will move it to left or right:
meanDf.join(df) # has mean as first column
df.join(meanDf) # has mean as last column

其他回答

假设您有列为A、B、C的df。

最简单的方法是:

df = df.reindex(['B','C','A'], axis=1)

另一种选择是使用set_index()方法,后跟reset_index()。请注意,我们首先pop()将要移动到数据帧前面的列,以便在重置索引时避免名称冲突:

df.set_index(df.pop('column_name'), inplace=True)
df.reset_index(inplace=True)

有关详细信息,请参阅How to change the order of dataframe columns in panda。

仅仅是翻转往往会有帮助。

df[df.columns[::-1]]

或者只是洗牌看看。

import random
cols = list(df.columns)
random.shuffle(cols)
df[cols]

您可以使用一个集合,它是唯一元素的无序集合,以保持“其他列的顺序不变”:

other_columns = list(set(df.columns).difference(["mean"])) #[0, 1, 2, 3, 4]

然后,可以通过以下方式使用lambda将特定列移动到前面:

In [1]: import numpy as np                                                                               

In [2]: import pandas as pd                                                                              

In [3]: df = pd.DataFrame(np.random.rand(10, 5))                                                         

In [4]: df["mean"] = df.mean(1)                                                                          

In [5]: move_col_to_front = lambda df, col: df[[col]+list(set(df.columns).difference([col]))]            

In [6]: move_col_to_front(df, "mean")                                                                    
Out[6]: 
       mean         0         1         2         3         4
0  0.697253  0.600377  0.464852  0.938360  0.945293  0.537384
1  0.609213  0.703387  0.096176  0.971407  0.955666  0.319429
2  0.561261  0.791842  0.302573  0.662365  0.728368  0.321158
3  0.518720  0.710443  0.504060  0.663423  0.208756  0.506916
4  0.616316  0.665932  0.794385  0.163000  0.664265  0.793995
5  0.519757  0.585462  0.653995  0.338893  0.714782  0.305654
6  0.532584  0.434472  0.283501  0.633156  0.317520  0.994271
7  0.640571  0.732680  0.187151  0.937983  0.921097  0.423945
8  0.562447  0.790987  0.200080  0.317812  0.641340  0.862018
9  0.563092  0.811533  0.662709  0.396048  0.596528  0.348642

In [7]: move_col_to_front(df, 2)                                                                         
Out[7]: 
          2         0         1         3         4      mean
0  0.938360  0.600377  0.464852  0.945293  0.537384  0.697253
1  0.971407  0.703387  0.096176  0.955666  0.319429  0.609213
2  0.662365  0.791842  0.302573  0.728368  0.321158  0.561261
3  0.663423  0.710443  0.504060  0.208756  0.506916  0.518720
4  0.163000  0.665932  0.794385  0.664265  0.793995  0.616316
5  0.338893  0.585462  0.653995  0.714782  0.305654  0.519757
6  0.633156  0.434472  0.283501  0.317520  0.994271  0.532584
7  0.937983  0.732680  0.187151  0.921097  0.423945  0.640571
8  0.317812  0.790987  0.200080  0.641340  0.862018  0.562447
9  0.396048  0.811533  0.662709  0.596528  0.348642  0.563092

这里有一种移动一个现有列的方法,它将修改现有的数据帧。

my_column = df.pop('column name')
df.insert(3, my_column.name, my_column)  # Is in-place