我有以下DataFrame(df):

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))

我通过分配添加更多列:

df['mean'] = df.mean(1)

如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?


当前回答

我相信,如果你知道另一列的位置,@Aman的答案是最好的。

如果您不知道mean的位置,但只有它的名称,则不能直接使用cols=cols[-1:]+cols[:-1]。以下是我接下来能想到的最好的东西:

meanDf = pd.DataFrame(df.pop('mean'))
# now df doesn't contain "mean" anymore. Order of join will move it to left or right:
meanDf.join(df) # has mean as first column
df.join(meanDf) # has mean as last column

其他回答

假设您有列为A、B、C的df。

最简单的方法是:

df = df.reindex(['B','C','A'], axis=1)

使用T怎么样?

df = df.T.reindex(['mean', 0, 1, 2, 3, 4]).T

简单地说,

df = df[['mean'] + df.columns[:-1].tolist()]

仅仅是翻转往往会有帮助。

df[df.columns[::-1]]

或者只是洗牌看看。

import random
cols = list(df.columns)
random.shuffle(cols)
df[cols]

书中最黑客的方法

df.insert(0, "test", df["mean"])
df = df.drop(columns=["mean"]).rename(columns={"test": "mean"})