今天,我非常惊讶地发现,当从数据文件读取数据时(例如),熊猫能够识别值的类型:

df = pandas.read_csv('test.dat', delimiter=r"\s+", names=['col1','col2','col3'])

例如,可以这样检查:

for i, r in df.iterrows():
    print type(r['col1']), type(r['col2']), type(r['col3'])

特别是整数、浮点数和字符串被正确识别。但是,我有一列的日期格式如下:2013-6-4。这些日期被识别为字符串(而不是python date-objects)。


你应该在读取时添加parse_dates=True,或者parse_dates=['列名'],这通常足以神奇地解析它。但是总有一些奇怪的格式需要手动定义。在这种情况下,还可以添加日期解析器函数,这是最灵活的方法。

假设你的字符串有一个列'datetime',那么:

from datetime import datetime
dateparse = lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M:%S')

df = pd.read_csv(infile, parse_dates=['datetime'], date_parser=dateparse)

通过这种方式,你甚至可以将多个列合并到一个datetime列中,这将'date'和'time'列合并到一个'datetime'列中:

dateparse = lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M:%S')

df = pd.read_csv(infile, parse_dates={'datetime': ['date', 'time']}, date_parser=dateparse)

你可以在本页找到strptime和strftime的指令(即用于不同格式的字母)。


Pandas read_csv方法非常适合解析日期。完整的文档请访问http://pandas.pydata.org/pandas-docs/stable/generated/pandas.io.parsers.read_csv.html

你甚至可以在不同的列中有不同的日期部分,并传递参数:

parse_dates : boolean, list of ints or names, list of lists, or dict
If True -> try parsing the index. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a
separate date column. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date
column. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’

The default sensing of dates works great, but it seems to be biased towards north american Date formats. If you live elsewhere you might occasionally be caught by the results. As far as I can remember 1/6/2000 means 6 January in the USA as opposed to 1 Jun where I live. It is smart enough to swing them around if dates like 23/6/2000 are used. Probably safer to stay with YYYYMMDD variations of date though. Apologies to pandas developers,here but i have not tested it with local dates recently.

可以使用date_parser参数传递一个函数来转换格式。

date_parser : function
Function to use for converting a sequence of string columns to an array of datetime
instances. The default uses dateutil.parser.parser to do the conversion.

也许自从@Rutger回答之后,pandas接口已经改变了,但在我使用的版本(0.15.2)中,date_parser函数接收的是日期列表,而不是单个值。在这种情况下,他的代码应该像这样更新:

from datetime import datetime
import pandas as pd

dateparse = lambda dates: [datetime.strptime(d, '%Y-%m-%d %H:%M:%S') for d in dates]
    
df = pd.read_csv('test.dat', parse_dates=['datetime'], date_parser=dateparse)

由于最初的提问者说他想要日期,而日期是2013-6-4格式,dateparse函数应该是:

dateparse = lambda dates: [datetime.strptime(d, '%Y-%m-%d').date() for d in dates]

是的——根据熊猫的说法。read_csv文档:

注意:对于iso8601格式的日期存在快速路径。

因此,如果您的csv有一个名为datetime的列,日期看起来像2013-01-01T01:01,例如,运行这个将使pandas(我在v0.19.2)自动获取日期和时间:

Df = pd.read_csv('test.csv', parse_dates=['datetime'])

请注意,您需要显式地传递parse_dates,否则它无法工作。

验证:

df.dtypes

您应该看到该列的数据类型是datetime64[ns]


你可以在pandas.read_csv()的文档中使用pandas.to_datetime():

如果列或索引包含不可解析的日期,则整个列 或index将作为对象数据类型原封不动地返回。为 非标准的日期时间解析,使用pd。pd.read_csv后的To_datetime。

演示:

>>> D = {'date': '2013-6-4'}
>>> df = pd.DataFrame(D, index=[0])
>>> df
       date
0  2013-6-4
>>> df.dtypes
date    object
dtype: object
>>> df['date'] = pd.to_datetime(df.date, format='%Y-%m-%d')
>>> df
        date
0 2013-06-04
>>> df.dtypes
date    datetime64[ns]
dtype: object

当将两个列合并为单个datetime列时,接受的答案将生成一个错误(pandas版本0.20.3),因为列分别发送给date_parser函数。

以下工作:

def dateparse(d,t):
    dt = d + " " + t
    return pd.datetime.strptime(dt, '%d/%m/%Y %H:%M:%S')

df = pd.read_csv(infile, parse_dates={'datetime': ['date', 'time']}, date_parser=dateparse)

如果工作表现对你很重要,确保你有时间:

import sys
import timeit
import pandas as pd

print('Python %s on %s' % (sys.version, sys.platform))
print('Pandas version %s' % pd.__version__)

repeat = 3
numbers = 100

def time(statement, _setup=None):
    print (min(
        timeit.Timer(statement, setup=_setup or setup).repeat(
            repeat, numbers)))

print("Format %m/%d/%y")
setup = """import pandas as pd
import io

data = io.StringIO('''\
ProductCode,Date
''' + '''\
x1,07/29/15
x2,07/29/15
x3,07/29/15
x4,07/30/15
x5,07/29/15
x6,07/29/15
x7,07/29/15
y7,08/05/15
x8,08/05/15
z3,08/05/15
''' * 100)"""

time('pd.read_csv(data); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"]); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"],'
     'infer_datetime_format=True); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"],'
     'date_parser=lambda x: pd.datetime.strptime(x, "%m/%d/%y")); data.seek(0)')

print("Format %Y-%m-%d %H:%M:%S")
setup = """import pandas as pd
import io

data = io.StringIO('''\
ProductCode,Date
''' + '''\
x1,2016-10-15 00:00:43
x2,2016-10-15 00:00:56
x3,2016-10-15 00:00:56
x4,2016-10-15 00:00:12
x5,2016-10-15 00:00:34
x6,2016-10-15 00:00:55
x7,2016-10-15 00:00:06
y7,2016-10-15 00:00:01
x8,2016-10-15 00:00:00
z3,2016-10-15 00:00:02
''' * 1000)"""

time('pd.read_csv(data); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"]); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"],'
     'infer_datetime_format=True); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"],'
     'date_parser=lambda x: pd.datetime.strptime(x, "%Y-%m-%d %H:%M:%S")); data.seek(0)')

打印:

Python 3.7.1 (v3.7.1:260ec2c36a, Oct 20 2018, 03:13:28) 
[Clang 6.0 (clang-600.0.57)] on darwin
Pandas version 0.23.4
Format %m/%d/%y
0.19123052499999993
8.20691274
8.143124389
1.2384357139999977
Format %Y-%m-%d %H:%M:%S
0.5238807110000039
0.9202787830000005
0.9832778819999959
12.002349824999996

因此,对于iso8601格式的日期(%Y-%m-%d %H:% m:%S显然是一个iso8601格式的日期,我猜T可以被删除并被空格取代),您不应该指定infer_datetime_format(这显然与更常见的日期没有区别),并且传递您自己的解析器只会削弱性能。另一方面,date_parser与不那么标准的日期格式确实有所不同。像往常一样,在优化之前一定要计时。


加载csv文件时包含日期列。我们有两种方法来制作熊猫 识别日期列,即

熊猫显式识别格式通过arg date_parser=mydateparser Pandas隐式识别agr infer_datetime_format=True的格式

一些日期列数据

01/01/18

01/02/18

这里我们不知道前两件事,可能是月,也可能是日。在这种情况下,我们要用 方法1: 显式传递格式

    mydateparser = lambda x: pd.datetime.strptime(x, "%m/%d/%y")
    df = pd.read_csv(file_name, parse_dates=['date_col_name'],
date_parser=mydateparser)

方法2:—隐式或自动识别格式

df = pd.read_csv(file_name, parse_dates=[date_col_name],infer_datetime_format=True)

除了其他回复所说的,如果必须解析具有数十万个时间戳的非常大的文件,date_parser可能会成为一个巨大的性能瓶颈,因为它是一个每行调用一次的Python函数。您可以通过在解析CSV文件时将日期保存为文本,然后将整个列一次性转换为日期来获得相当大的性能改进:

# For a data column
df = pd.read_csv(infile, parse_dates={'mydatetime': ['date', 'time']})

df['mydatetime'] = pd.to_datetime(df['mydatetime'], exact=True, cache=True, format='%Y-%m-%d %H:%M:%S')
# For a DateTimeIndex
df = pd.read_csv(infile, parse_dates={'mydatetime': ['date', 'time']}, index_col='mydatetime')

df.index = pd.to_datetime(df.index, exact=True, cache=True, format='%Y-%m-%d %H:%M:%S')
# For a MultiIndex
df = pd.read_csv(infile, parse_dates={'mydatetime': ['date', 'time']}, index_col=['mydatetime', 'num'])

idx_mydatetime = df.index.get_level_values(0)
idx_num = df.index.get_level_values(1)
idx_mydatetime = pd.to_datetime(idx_mydatetime, exact=True, cache=True, format='%Y-%m-%d %H:%M:%S')
df.index = pd.MultiIndex.from_arrays([idx_mydatetime, idx_num])

在我的用例中,一个文件有200k行(每行一个时间戳),这将处理时间从大约一分钟缩短到不到一秒。


你可以使用参数date_parser和一个函数来将一个字符串列序列转换为一个datetime实例数组:

parser = lambda x: pd.to_datetime(x, format='%Y-%m-%d %H:%M:%S')
pd.read_csv('path', date_parser=parser, parse_dates=['date_col1', 'date_col2'])

不,在pandas中没有办法自动识别日期列。

Pandas在类型推断方面做得很差。它基本上把大多数列作为泛型对象类型,除非你手动绕过它。使用上面提到的parse_dates参数。

如果您想自动检测列类型,则必须使用单独的数据分析工具,例如。然后将推断的类型转换或反馈回DataFrame构造函数(例如。对于dates和from_csv,使用parse_dates参数)。


是的,这段代码工作起来很轻松。这里索引0指的是日期列的索引。

df = pd.read_csv(filepath, parse_dates=[0], infer_datetime_format = True)

分别以日期和时间格式读取现有字符串列


pd.read_csv('CGMData.csv', parse_dates=['Date', 'Time'])

结果列



连接日期和时间的字符串列,并添加datetype对象的新列-删除原始列

如果要重命名新列名,则将字典作为 如下面的例子所示,新的列名将是键名, 如果作为列的列表传递,新的列名将是列表中传递的列名的组合,以_例如Date_Time分隔


    # parse_dates={'given_name': ['Date', 'Time']}    
    pd.read_csv("InsulinData.csv",low_memory=False, 
                                 parse_dates=[['Date', 'Time']])

    pd.read_csv("InsulinData.csv",low_memory=False, 
                                 parse_dates={'date_time': ['Date', 'Time']})

连接日期和时间的字符串列,并添加datetype对象的新列和保留原始列


pd.read_csv("InsulinData.csv",low_memory=False, 
          parse_dates=[['Date', 'Time']], keep_date_col=True)

想要更改从csv读取的日期和时间的格式


parser = lambda x: pd.to_datetime(x, format='%Y-%m-%d %H:%M:%S')
pd.read_csv('path', date_parser=parser, parse_dates=['date', 'time'])