今天,我非常惊讶地发现,当从数据文件读取数据时(例如),熊猫能够识别值的类型:

df = pandas.read_csv('test.dat', delimiter=r"\s+", names=['col1','col2','col3'])

例如,可以这样检查:

for i, r in df.iterrows():
    print type(r['col1']), type(r['col2']), type(r['col3'])

特别是整数、浮点数和字符串被正确识别。但是,我有一列的日期格式如下:2013-6-4。这些日期被识别为字符串(而不是python date-objects)。


当前回答

不,在pandas中没有办法自动识别日期列。

Pandas在类型推断方面做得很差。它基本上把大多数列作为泛型对象类型,除非你手动绕过它。使用上面提到的parse_dates参数。

如果您想自动检测列类型,则必须使用单独的数据分析工具,例如。然后将推断的类型转换或反馈回DataFrame构造函数(例如。对于dates和from_csv,使用parse_dates参数)。

其他回答

不,在pandas中没有办法自动识别日期列。

Pandas在类型推断方面做得很差。它基本上把大多数列作为泛型对象类型,除非你手动绕过它。使用上面提到的parse_dates参数。

如果您想自动检测列类型,则必须使用单独的数据分析工具,例如。然后将推断的类型转换或反馈回DataFrame构造函数(例如。对于dates和from_csv,使用parse_dates参数)。

是的——根据熊猫的说法。read_csv文档:

注意:对于iso8601格式的日期存在快速路径。

因此,如果您的csv有一个名为datetime的列,日期看起来像2013-01-01T01:01,例如,运行这个将使pandas(我在v0.19.2)自动获取日期和时间:

Df = pd.read_csv('test.csv', parse_dates=['datetime'])

请注意,您需要显式地传递parse_dates,否则它无法工作。

验证:

df.dtypes

您应该看到该列的数据类型是datetime64[ns]

你应该在读取时添加parse_dates=True,或者parse_dates=['列名'],这通常足以神奇地解析它。但是总有一些奇怪的格式需要手动定义。在这种情况下,还可以添加日期解析器函数,这是最灵活的方法。

假设你的字符串有一个列'datetime',那么:

from datetime import datetime
dateparse = lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M:%S')

df = pd.read_csv(infile, parse_dates=['datetime'], date_parser=dateparse)

通过这种方式,你甚至可以将多个列合并到一个datetime列中,这将'date'和'time'列合并到一个'datetime'列中:

dateparse = lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M:%S')

df = pd.read_csv(infile, parse_dates={'datetime': ['date', 'time']}, date_parser=dateparse)

你可以在本页找到strptime和strftime的指令(即用于不同格式的字母)。

是的,这段代码工作起来很轻松。这里索引0指的是日期列的索引。

df = pd.read_csv(filepath, parse_dates=[0], infer_datetime_format = True)

分别以日期和时间格式读取现有字符串列


pd.read_csv('CGMData.csv', parse_dates=['Date', 'Time'])

结果列



连接日期和时间的字符串列,并添加datetype对象的新列-删除原始列

如果要重命名新列名,则将字典作为 如下面的例子所示,新的列名将是键名, 如果作为列的列表传递,新的列名将是列表中传递的列名的组合,以_例如Date_Time分隔


    # parse_dates={'given_name': ['Date', 'Time']}    
    pd.read_csv("InsulinData.csv",low_memory=False, 
                                 parse_dates=[['Date', 'Time']])

    pd.read_csv("InsulinData.csv",low_memory=False, 
                                 parse_dates={'date_time': ['Date', 'Time']})

连接日期和时间的字符串列,并添加datetype对象的新列和保留原始列


pd.read_csv("InsulinData.csv",low_memory=False, 
          parse_dates=[['Date', 'Time']], keep_date_col=True)

想要更改从csv读取的日期和时间的格式


parser = lambda x: pd.to_datetime(x, format='%Y-%m-%d %H:%M:%S')
pd.read_csv('path', date_parser=parser, parse_dates=['date', 'time'])