今天,我非常惊讶地发现,当从数据文件读取数据时(例如),熊猫能够识别值的类型:

df = pandas.read_csv('test.dat', delimiter=r"\s+", names=['col1','col2','col3'])

例如,可以这样检查:

for i, r in df.iterrows():
    print type(r['col1']), type(r['col2']), type(r['col3'])

特别是整数、浮点数和字符串被正确识别。但是,我有一列的日期格式如下:2013-6-4。这些日期被识别为字符串(而不是python date-objects)。


当前回答

Pandas read_csv方法非常适合解析日期。完整的文档请访问http://pandas.pydata.org/pandas-docs/stable/generated/pandas.io.parsers.read_csv.html

你甚至可以在不同的列中有不同的日期部分,并传递参数:

parse_dates : boolean, list of ints or names, list of lists, or dict
If True -> try parsing the index. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a
separate date column. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date
column. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’

The default sensing of dates works great, but it seems to be biased towards north american Date formats. If you live elsewhere you might occasionally be caught by the results. As far as I can remember 1/6/2000 means 6 January in the USA as opposed to 1 Jun where I live. It is smart enough to swing them around if dates like 23/6/2000 are used. Probably safer to stay with YYYYMMDD variations of date though. Apologies to pandas developers,here but i have not tested it with local dates recently.

可以使用date_parser参数传递一个函数来转换格式。

date_parser : function
Function to use for converting a sequence of string columns to an array of datetime
instances. The default uses dateutil.parser.parser to do the conversion.

其他回答

你可以使用参数date_parser和一个函数来将一个字符串列序列转换为一个datetime实例数组:

parser = lambda x: pd.to_datetime(x, format='%Y-%m-%d %H:%M:%S')
pd.read_csv('path', date_parser=parser, parse_dates=['date_col1', 'date_col2'])

加载csv文件时包含日期列。我们有两种方法来制作熊猫 识别日期列,即

熊猫显式识别格式通过arg date_parser=mydateparser Pandas隐式识别agr infer_datetime_format=True的格式

一些日期列数据

01/01/18

01/02/18

这里我们不知道前两件事,可能是月,也可能是日。在这种情况下,我们要用 方法1: 显式传递格式

    mydateparser = lambda x: pd.datetime.strptime(x, "%m/%d/%y")
    df = pd.read_csv(file_name, parse_dates=['date_col_name'],
date_parser=mydateparser)

方法2:—隐式或自动识别格式

df = pd.read_csv(file_name, parse_dates=[date_col_name],infer_datetime_format=True)

如果工作表现对你很重要,确保你有时间:

import sys
import timeit
import pandas as pd

print('Python %s on %s' % (sys.version, sys.platform))
print('Pandas version %s' % pd.__version__)

repeat = 3
numbers = 100

def time(statement, _setup=None):
    print (min(
        timeit.Timer(statement, setup=_setup or setup).repeat(
            repeat, numbers)))

print("Format %m/%d/%y")
setup = """import pandas as pd
import io

data = io.StringIO('''\
ProductCode,Date
''' + '''\
x1,07/29/15
x2,07/29/15
x3,07/29/15
x4,07/30/15
x5,07/29/15
x6,07/29/15
x7,07/29/15
y7,08/05/15
x8,08/05/15
z3,08/05/15
''' * 100)"""

time('pd.read_csv(data); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"]); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"],'
     'infer_datetime_format=True); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"],'
     'date_parser=lambda x: pd.datetime.strptime(x, "%m/%d/%y")); data.seek(0)')

print("Format %Y-%m-%d %H:%M:%S")
setup = """import pandas as pd
import io

data = io.StringIO('''\
ProductCode,Date
''' + '''\
x1,2016-10-15 00:00:43
x2,2016-10-15 00:00:56
x3,2016-10-15 00:00:56
x4,2016-10-15 00:00:12
x5,2016-10-15 00:00:34
x6,2016-10-15 00:00:55
x7,2016-10-15 00:00:06
y7,2016-10-15 00:00:01
x8,2016-10-15 00:00:00
z3,2016-10-15 00:00:02
''' * 1000)"""

time('pd.read_csv(data); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"]); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"],'
     'infer_datetime_format=True); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"],'
     'date_parser=lambda x: pd.datetime.strptime(x, "%Y-%m-%d %H:%M:%S")); data.seek(0)')

打印:

Python 3.7.1 (v3.7.1:260ec2c36a, Oct 20 2018, 03:13:28) 
[Clang 6.0 (clang-600.0.57)] on darwin
Pandas version 0.23.4
Format %m/%d/%y
0.19123052499999993
8.20691274
8.143124389
1.2384357139999977
Format %Y-%m-%d %H:%M:%S
0.5238807110000039
0.9202787830000005
0.9832778819999959
12.002349824999996

因此,对于iso8601格式的日期(%Y-%m-%d %H:% m:%S显然是一个iso8601格式的日期,我猜T可以被删除并被空格取代),您不应该指定infer_datetime_format(这显然与更常见的日期没有区别),并且传递您自己的解析器只会削弱性能。另一方面,date_parser与不那么标准的日期格式确实有所不同。像往常一样,在优化之前一定要计时。

分别以日期和时间格式读取现有字符串列


pd.read_csv('CGMData.csv', parse_dates=['Date', 'Time'])

结果列



连接日期和时间的字符串列,并添加datetype对象的新列-删除原始列

如果要重命名新列名,则将字典作为 如下面的例子所示,新的列名将是键名, 如果作为列的列表传递,新的列名将是列表中传递的列名的组合,以_例如Date_Time分隔


    # parse_dates={'given_name': ['Date', 'Time']}    
    pd.read_csv("InsulinData.csv",low_memory=False, 
                                 parse_dates=[['Date', 'Time']])

    pd.read_csv("InsulinData.csv",low_memory=False, 
                                 parse_dates={'date_time': ['Date', 'Time']})

连接日期和时间的字符串列,并添加datetype对象的新列和保留原始列


pd.read_csv("InsulinData.csv",low_memory=False, 
          parse_dates=[['Date', 'Time']], keep_date_col=True)

想要更改从csv读取的日期和时间的格式


parser = lambda x: pd.to_datetime(x, format='%Y-%m-%d %H:%M:%S')
pd.read_csv('path', date_parser=parser, parse_dates=['date', 'time'])

除了其他回复所说的,如果必须解析具有数十万个时间戳的非常大的文件,date_parser可能会成为一个巨大的性能瓶颈,因为它是一个每行调用一次的Python函数。您可以通过在解析CSV文件时将日期保存为文本,然后将整个列一次性转换为日期来获得相当大的性能改进:

# For a data column
df = pd.read_csv(infile, parse_dates={'mydatetime': ['date', 'time']})

df['mydatetime'] = pd.to_datetime(df['mydatetime'], exact=True, cache=True, format='%Y-%m-%d %H:%M:%S')
# For a DateTimeIndex
df = pd.read_csv(infile, parse_dates={'mydatetime': ['date', 'time']}, index_col='mydatetime')

df.index = pd.to_datetime(df.index, exact=True, cache=True, format='%Y-%m-%d %H:%M:%S')
# For a MultiIndex
df = pd.read_csv(infile, parse_dates={'mydatetime': ['date', 'time']}, index_col=['mydatetime', 'num'])

idx_mydatetime = df.index.get_level_values(0)
idx_num = df.index.get_level_values(1)
idx_mydatetime = pd.to_datetime(idx_mydatetime, exact=True, cache=True, format='%Y-%m-%d %H:%M:%S')
df.index = pd.MultiIndex.from_arrays([idx_mydatetime, idx_num])

在我的用例中,一个文件有200k行(每行一个时间戳),这将处理时间从大约一分钟缩短到不到一秒。