如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
当前回答
你也可以使用像geolib这样的模块:
安装方法:
$ npm install geolib
使用方法:
import { getDistance } from 'geolib'
const distance = getDistance(
{ latitude: 51.5103, longitude: 7.49347 },
{ latitude: "51° 31' N", longitude: "7° 28' E" }
)
console.log(distance)
文档: https://www.npmjs.com/package/geolib
其他回答
下面是Haversine公式的typescript实现
static getDistanceFromLatLonInKm(lat1: number, lon1: number, lat2: number, lon2: number): number {
var deg2Rad = deg => {
return deg * Math.PI / 180;
}
var r = 6371; // Radius of the earth in km
var dLat = deg2Rad(lat2 - lat1);
var dLon = deg2Rad(lon2 - lon1);
var a =
Math.sin(dLat / 2) * Math.sin(dLat / 2) +
Math.cos(deg2Rad(lat1)) * Math.cos(deg2Rad(lat2)) *
Math.sin(dLon / 2) * Math.sin(dLon / 2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
var d = r * c; // Distance in km
return d;
}
下面是Erlang实现
lat_lng({Lat1, Lon1}=_Point1, {Lat2, Lon2}=_Point2) ->
P = math:pi() / 180,
R = 6371, % Radius of Earth in KM
A = 0.5 - math:cos((Lat2 - Lat1) * P) / 2 +
math:cos(Lat1 * P) * math:cos(Lat2 * P) * (1 - math:cos((Lon2 - Lon1) * P))/2,
R * 2 * math:asin(math:sqrt(A)).
这个链接可能对你有帮助,因为它详细介绍了使用哈弗辛公式来计算距离。
摘录:
这个脚本计算两点之间的大圆距离 也就是说,在地球表面上的最短距离-使用 “半正矢”公式。
function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2) {
var R = 6371; // Radius of the earth in km
var dLat = deg2rad(lat2-lat1); // deg2rad below
var dLon = deg2rad(lon2-lon1);
var a =
Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) *
Math.sin(dLon/2) * Math.sin(dLon/2)
;
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c; // Distance in km
return d;
}
function deg2rad(deg) {
return deg * (Math.PI/180)
}
可能有一个更简单、更正确的解决方案:地球的周长在赤道上是40000公里,在格林威治(或任何经度)周期上约为37000公里。因此:
pythagoras = function (lat1, lon1, lat2, lon2) {
function sqr(x) {return x * x;}
function cosDeg(x) {return Math.cos(x * Math.PI / 180.0);}
var earthCyclePerimeter = 40000000.0 * cosDeg((lat1 + lat2) / 2.0);
var dx = (lon1 - lon2) * earthCyclePerimeter / 360.0;
var dy = 37000000.0 * (lat1 - lat2) / 360.0;
return Math.sqrt(sqr(dx) + sqr(dy));
};
我同意它应该被微调,我自己说过它是一个椭球,所以半径乘以余弦值是不同的。但它更准确一点。与谷歌map相比,误差明显减小。
//JAVA
public Double getDistanceBetweenTwoPoints(Double latitude1, Double longitude1, Double latitude2, Double longitude2) {
final int RADIUS_EARTH = 6371;
double dLat = getRad(latitude2 - latitude1);
double dLong = getRad(longitude2 - longitude1);
double a = Math.sin(dLat / 2) * Math.sin(dLat / 2) + Math.cos(getRad(latitude1)) * Math.cos(getRad(latitude2)) * Math.sin(dLong / 2) * Math.sin(dLong / 2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
return (RADIUS_EARTH * c) * 1000;
}
private Double getRad(Double x) {
return x * Math.PI / 180;
}