如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
当前回答
我在R中做了一个自定义函数,使用R基本包中可用的函数来计算两个空间点之间的距离(km)。
custom_hav_dist <- function(lat1, lon1, lat2, lon2) {
R <- 6371
Radian_factor <- 0.0174533
lat_1 <- (90-lat1)*Radian_factor
lat_2 <- (90-lat2)*Radian_factor
diff_long <-(lon1-lon2)*Radian_factor
distance_in_km <- 6371*acos((cos(lat_1)*cos(lat_2))+
(sin(lat_1)*sin(lat_2)*cos(diff_long)))
rm(lat1, lon1, lat2, lon2)
return(distance_in_km)
}
样例输出
custom_hav_dist(50.31,19.08,54.14,19.39)
[1] 426.3987
PS:要计算以英里为单位的距离,请将函数R(6371)替换为3958.756(海里使用3440.065)。
其他回答
要计算球体上两点之间的距离,你需要做大圆计算。
如果你需要将距离重新投影到平面上,MapTools中有许多C/ c++库可以帮助你进行地图投影。要做到这一点,你需要不同坐标系的投影字符串。
你可能还会发现MapWindow是一个可视化点的有用工具。此外,由于它是开源的,它是如何使用project.dll库的有用指南,它似乎是核心的开源投影库。
非常感谢这一切。我在Objective-C iPhone应用程序中使用了以下代码:
const double PIx = 3.141592653589793;
const double RADIO = 6371; // Mean radius of Earth in Km
double convertToRadians(double val) {
return val * PIx / 180;
}
-(double)kilometresBetweenPlace1:(CLLocationCoordinate2D) place1 andPlace2:(CLLocationCoordinate2D) place2 {
double dlon = convertToRadians(place2.longitude - place1.longitude);
double dlat = convertToRadians(place2.latitude - place1.latitude);
double a = ( pow(sin(dlat / 2), 2) + cos(convertToRadians(place1.latitude))) * cos(convertToRadians(place2.latitude)) * pow(sin(dlon / 2), 2);
double angle = 2 * asin(sqrt(a));
return angle * RADIO;
}
纬度和经度是十进制的。我没有在asin()调用中使用min(),因为我使用的距离非常小,以至于它们不需要min()。
它给出了错误的答案,直到我传入弧度的值-现在它几乎与从苹果地图应用程序中获得的值相同:-)
额外的更新:
如果你使用的是iOS4或更高版本,那么苹果会提供一些方法来实现相同的功能:
-(double)kilometresBetweenPlace1:(CLLocationCoordinate2D) place1 andPlace2:(CLLocationCoordinate2D) place2 {
MKMapPoint start, finish;
start = MKMapPointForCoordinate(place1);
finish = MKMapPointForCoordinate(place2);
return MKMetersBetweenMapPoints(start, finish) / 1000;
}
你可以用Haversine公式计算它,它是:
a = sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin²(Δλ/2)
c = 2 ⋅ atan2( √a, √(1−a) )
d = R ⋅ c
下面给出了一个计算两点之间距离的例子
假设我要计算从新德里到伦敦的距离,那么我该如何使用这个公式:
New delhi co-ordinates= 28.7041° N, 77.1025° E
London co-ordinates= 51.5074° N, 0.1278° W
var R = 6371e3; // metres
var φ1 = 28.7041.toRadians();
var φ2 = 51.5074.toRadians();
var Δφ = (51.5074-28.7041).toRadians();
var Δλ = (0.1278-77.1025).toRadians();
var a = Math.sin(Δφ/2) * Math.sin(Δφ/2) +
Math.cos(φ1) * Math.cos(φ2) *
Math.sin(Δλ/2) * Math.sin(Δλ/2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c; // metres
d = d/1000; // km
PIP安装haversine
Python实现
原产地是美国毗连的中心。
from haversine import haversine, Unit
origin = (39.50, 98.35)
paris = (48.8567, 2.3508)
haversine(origin, paris, unit=Unit.MILES)
要得到以千米为单位的答案,只需设置unit= unit。千米(这是默认值)。
我在R中做了一个自定义函数,使用R基本包中可用的函数来计算两个空间点之间的距离(km)。
custom_hav_dist <- function(lat1, lon1, lat2, lon2) {
R <- 6371
Radian_factor <- 0.0174533
lat_1 <- (90-lat1)*Radian_factor
lat_2 <- (90-lat2)*Radian_factor
diff_long <-(lon1-lon2)*Radian_factor
distance_in_km <- 6371*acos((cos(lat_1)*cos(lat_2))+
(sin(lat_1)*sin(lat_2)*cos(diff_long)))
rm(lat1, lon1, lat2, lon2)
return(distance_in_km)
}
样例输出
custom_hav_dist(50.31,19.08,54.14,19.39)
[1] 426.3987
PS:要计算以英里为单位的距离,请将函数R(6371)替换为3958.756(海里使用3440.065)。