如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
当前回答
哈弗辛公式在大多数情况下都是很好的公式,其他答案已经包含了它所以我就不占用空间了。但重要的是要注意,无论使用什么公式(是的,不仅仅是一个)。因为可能的精度范围很大,以及所需的计算时间。公式的选择需要更多的思考,而不是简单的无脑答案。
这个帖子来自nasa的一个人,是我在讨论这些选项时发现的最好的一个
http://www.cs.nyu.edu/visual/home/proj/tiger/gisfaq.html
例如,如果您只是在100英里半径内按距离对行进行排序。地平公式比哈弗辛公式快得多。
HalfPi = 1.5707963;
R = 3956; /* the radius gives you the measurement unit*/
a = HalfPi - latoriginrad;
b = HalfPi - latdestrad;
u = a * a + b * b;
v = - 2 * a * b * cos(longdestrad - longoriginrad);
c = sqrt(abs(u + v));
return R * c;
注意这里只有一个余弦和一个平方根。在哈弗辛公式中有9个。
其他回答
我在R中做了一个自定义函数,使用R基本包中可用的函数来计算两个空间点之间的距离(km)。
custom_hav_dist <- function(lat1, lon1, lat2, lon2) {
R <- 6371
Radian_factor <- 0.0174533
lat_1 <- (90-lat1)*Radian_factor
lat_2 <- (90-lat2)*Radian_factor
diff_long <-(lon1-lon2)*Radian_factor
distance_in_km <- 6371*acos((cos(lat_1)*cos(lat_2))+
(sin(lat_1)*sin(lat_2)*cos(diff_long)))
rm(lat1, lon1, lat2, lon2)
return(distance_in_km)
}
样例输出
custom_hav_dist(50.31,19.08,54.14,19.39)
[1] 426.3987
PS:要计算以英里为单位的距离,请将函数R(6371)替换为3958.756(海里使用3440.065)。
由于这是关于这个话题最受欢迎的讨论,我将在这里补充我从2019年底到2020年初的经验。为了补充现有的答案-我的重点是找到一个准确和快速(即向量化)的解决方案。
让我们从这里最常用的答案——哈弗辛方法开始。向量化是很简单的,参见下面python中的例子:
def haversine(lat1, lon1, lat2, lon2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
All args must be of equal length.
Distances are in meters.
Ref:
https://stackoverflow.com/questions/29545704/fast-haversine-approximation-python-pandas
https://ipython.readthedocs.io/en/stable/interactive/magics.html
"""
Radius = 6.371e6
lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = np.sin(dlat/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.0)**2
c = 2 * np.arcsin(np.sqrt(a))
s12 = Radius * c
# initial azimuth in degrees
y = np.sin(lon2-lon1) * np.cos(lat2)
x = np.cos(lat1)*np.sin(lat2) - np.sin(lat1)*np.cos(lat2)*np.cos(dlon)
azi1 = np.arctan2(y, x)*180./math.pi
return {'s12':s12, 'azi1': azi1}
就精确度而言,它是最不准确的。维基百科在没有任何来源的情况下表示相对偏差平均为0.5%。我的实验显示偏差较小。以下是10万个随机点与我的库的比较,应该精确到毫米级:
np.random.seed(42)
lats1 = np.random.uniform(-90,90,100000)
lons1 = np.random.uniform(-180,180,100000)
lats2 = np.random.uniform(-90,90,100000)
lons2 = np.random.uniform(-180,180,100000)
r1 = inverse(lats1, lons1, lats2, lons2)
r2 = haversine(lats1, lons1, lats2, lons2)
print("Max absolute error: {:4.2f}m".format(np.max(r1['s12']-r2['s12'])))
print("Mean absolute error: {:4.2f}m".format(np.mean(r1['s12']-r2['s12'])))
print("Max relative error: {:4.2f}%".format(np.max((r2['s12']/r1['s12']-1)*100)))
print("Mean relative error: {:4.2f}%".format(np.mean((r2['s12']/r1['s12']-1)*100)))
输出:
Max absolute error: 26671.47m
Mean absolute error: -2499.84m
Max relative error: 0.55%
Mean relative error: -0.02%
因此,在10万对随机坐标上,平均偏差为2.5km,这可能对大多数情况都是好的。
下一个选择是Vincenty公式,精确到毫米,这取决于收敛标准,也可以向量化。它确实有在对跖点附近收敛的问题。你可以通过放宽收敛标准使其收敛于这些点,但准确度会下降到0.25%甚至更多。在对映点之外,Vincenty将提供与地理库相近的结果,相对误差小于1。平均是E-6。
这里提到的Geographiclib实际上是当前的黄金标准。它有几个实现,而且相当快,特别是如果你使用的是c++版本。
Now, if you are planning to use Python for anything above 10k points I'd suggest to consider my vectorized implementation. I created a geovectorslib library with vectorized Vincenty routine for my own needs, which uses Geographiclib as fallback for near antipodal points. Below is the comparison vs Geographiclib for 100k points. As you can see it provides up to 20x improvement for inverse and 100x for direct methods for 100k points and the gap will grow with number of points. Accuracy-wise it will be within 1.e-5 rtol of Georgraphiclib.
Direct method for 100,000 points
94.9 ms ± 25 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
9.79 s ± 1.4 s per loop (mean ± std. dev. of 7 runs, 1 loop each)
Inverse method for 100,000 points
1.5 s ± 504 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
24.2 s ± 3.91 s per loop (mean ± std. dev. of 7 runs, 1 loop each)
function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2,units) {
var R = 6371; // Radius of the earth in km
var dLat = deg2rad(lat2-lat1); // deg2rad below
var dLon = deg2rad(lon2-lon1);
var a =
Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) *
Math.sin(dLon/2) * Math.sin(dLon/2)
;
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c;
var miles = d / 1.609344;
if ( units == 'km' ) {
return d;
} else {
return miles;
}}
查克的解决方案,也适用于英里。
这是我的java实现计算距离经过一些搜索。我用的是世界平均半径(来自维基百科),单位是千米。İf你想要的结果英里,然后使用世界半径英里。
public static double distanceLatLong2(double lat1, double lng1, double lat2, double lng2)
{
double earthRadius = 6371.0d; // KM: use mile here if you want mile result
double dLat = toRadian(lat2 - lat1);
double dLng = toRadian(lng2 - lng1);
double a = Math.pow(Math.sin(dLat/2), 2) +
Math.cos(toRadian(lat1)) * Math.cos(toRadian(lat2)) *
Math.pow(Math.sin(dLng/2), 2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
return earthRadius * c; // returns result kilometers
}
public static double toRadian(double degrees)
{
return (degrees * Math.PI) / 180.0d;
}
非常感谢这一切。我在Objective-C iPhone应用程序中使用了以下代码:
const double PIx = 3.141592653589793;
const double RADIO = 6371; // Mean radius of Earth in Km
double convertToRadians(double val) {
return val * PIx / 180;
}
-(double)kilometresBetweenPlace1:(CLLocationCoordinate2D) place1 andPlace2:(CLLocationCoordinate2D) place2 {
double dlon = convertToRadians(place2.longitude - place1.longitude);
double dlat = convertToRadians(place2.latitude - place1.latitude);
double a = ( pow(sin(dlat / 2), 2) + cos(convertToRadians(place1.latitude))) * cos(convertToRadians(place2.latitude)) * pow(sin(dlon / 2), 2);
double angle = 2 * asin(sqrt(a));
return angle * RADIO;
}
纬度和经度是十进制的。我没有在asin()调用中使用min(),因为我使用的距离非常小,以至于它们不需要min()。
它给出了错误的答案,直到我传入弧度的值-现在它几乎与从苹果地图应用程序中获得的值相同:-)
额外的更新:
如果你使用的是iOS4或更高版本,那么苹果会提供一些方法来实现相同的功能:
-(double)kilometresBetweenPlace1:(CLLocationCoordinate2D) place1 andPlace2:(CLLocationCoordinate2D) place2 {
MKMapPoint start, finish;
start = MKMapPointForCoordinate(place1);
finish = MKMapPointForCoordinate(place2);
return MKMetersBetweenMapPoints(start, finish) / 1000;
}